Renk, Dana R. team published research on European Journal of Medicinal Chemistry in 2021 | 5382-16-1

5382-16-1, 4-Hydroxypiperidine is a molecule with a carbonyl group. It is the most active and selective CCR5 receptor antagonist that has been studied to date. 4-Hydroxypiperidine inhibits HIV infection by preventing the binding of HIV to its receptor on the surface of white blood cells, thereby preventing it from entering these cells. 4-Hydroxypiperidine also acts as an anti-inflammatory agent in chronic bronchitis patients, due to its ability to inhibit prostaglandin synthesis. The chemical ionization mass spectra of this molecule show peaks for methyl ethyl, malic acid, and hydroxyl groups. These properties make 4-hydroxypiperidine a useful candidate for drug development against inflammatory diseases and several cancers.
The molecular structure, vibrational spectra, NBO and UV-spectral analysis of 4-Hydroxypiperidine have been studied. The compounds with a substituted 4-piperidinol core have been found to be potent antagonists of the human H receptor., Electric Literature of 5382-16-1

Industrially, piperidine is produced by the hydrogenation of pyridine, usually over a molybdenum disulfide catalyst: C5H5N + 3 H2 → C5H10NH. 5382-16-1, formula is C5H11NO, Name is 4-Piperidinol. Pyridine can also be reduced to piperidine via a modified Birch reduction using sodium in ethanol. Electric Literature of 5382-16-1.

Renk, Dana R.;Skraban, Marcel;Bier, Dirk;Schulze, Annette;Wabbals, Erika;Wedekind, Franziska;Neumaier, Felix;Neumaier, Bernd;Holschbach, Marcus research published 《 Design, synthesis and biological evaluation of Tozadenant analogues as adenosine A2A receptor ligands》, the research content is summarized as follows. With the aim to obtain potent adenosine A2A receptor (A2AR) ligands, a series of eighteen derivatives of 4-hydroxy-N-(4-methoxy-7-morpholin-4-yl-1,3-benzo[d]thiazol-2-yl)-4-methylpiperidine-1-carboxamide were designed and synthesized. The target compounds were obtained by a chem. building block principle that involved reaction of the appropriate aminobenzothiazole Ph carbamates with either com. available or readily synthesized functionalized piperidines. Ki values for human A2AR ranged from 2.4 to 38 nM, with more than 120-fold selectivity over A1 receptors for all evaluated compounds except 4-Fluoro-4-(hydroxymethyl)-N-(4-methoxy-7-morpholinobenzo[d]thiazol-2-yl)piperidine-1-carboxamide which had a Ki of 361 nM and 18-fold selectivity. The most potent fluorine-containing derivatives exhibited Ki values of 4.9 nM, 3.6 nM and 2.8 nM for the human A2AR. Interestingly, the corresponding values for rat A2AR were found to be four to five times higher. Their binding to A2AR was further confirmed by radiolabeling with 18F and in vitro autoradiog. in rat brain slices, which showed almost exclusive striatal binding and complete displacement by the A2AR antagonist ZM 241385. Authors conclude that these compounds represent potential candidates for the visualization of the A2A receptor and open pathways to novel therapeutic treatments of neurodegenerative disorders or cancer.

5382-16-1, 4-Hydroxypiperidine is a molecule with a carbonyl group. It is the most active and selective CCR5 receptor antagonist that has been studied to date. 4-Hydroxypiperidine inhibits HIV infection by preventing the binding of HIV to its receptor on the surface of white blood cells, thereby preventing it from entering these cells. 4-Hydroxypiperidine also acts as an anti-inflammatory agent in chronic bronchitis patients, due to its ability to inhibit prostaglandin synthesis. The chemical ionization mass spectra of this molecule show peaks for methyl ethyl, malic acid, and hydroxyl groups. These properties make 4-hydroxypiperidine a useful candidate for drug development against inflammatory diseases and several cancers.
The molecular structure, vibrational spectra, NBO and UV-spectral analysis of 4-Hydroxypiperidine have been studied. The compounds with a substituted 4-piperidinol core have been found to be potent antagonists of the human H receptor., Electric Literature of 5382-16-1

Referemce:
Piperidine – Wikipedia,
Piperidine | C5H11N – PubChem

 

Ren, Wei team published research on Environmental Science & Technology in 2019 | 2403-88-5

2403-88-5, 2,2,6,6-Tetramethyl-4-piperidinol(TEMPO) is a useful research compound. Its molecular formula is C9H19NO and its molecular weight is 157.25 g/mol. The purity is usually 95%.
TEMPO is an intermediate used in the preparation of Piperidinyloxy free radical derivatives.
TEMPO is an organic compound that acts as a radical scavenger. It is stable in the presence of water and air and can be used for the inhibition of bacterial growth. TEMPO reacts with reactive intermediates to form non-reactive substances and terminate chain reactions. This process is optimal at temperatures between 0°C and 40°C and pH values between 3.5 and 7.5. TEMPO has been shown to inhibit the growth of bacteria by reacting with reactive molecules such as amines, chlorides, or low energy radicals in aqueous solution. TEMPO also has genotoxic activity that inhibits DNA synthesis in bacterial cells through oxidation of guanine residues on DNA molecules., Recommanded Product: 2,2,6,6-Tetramethyl-4-piperidinol

Piperidine is an organic compound with the molecular formula (CH2)5NH. This heterocyclic amine consists of a six-membered ring containing five methylene bridges (–CH2–) and one amine bridge (–NH–). 2403-88-5, formula is C9H19NO, Name is 2,2,6,6-Tetramethyl-4-piperidinol. It is a colorless liquid with an odor described as objectionable, and typical of amines. Recommanded Product: 2,2,6,6-Tetramethyl-4-piperidinol.

Ren, Wei;Xiong, Liangliang;Yuan, Xuehong;Yu, Ziwei;Zhang, Hui;Duan, Xiaoguang;Wang, Shaobin research published 《 Activation of Peroxydisulfate on Carbon Nanotubes: Electron-Transfer Mechanism》, the research content is summarized as follows. This study proposed an electrochem. technique for studying the nonradical oxidation pathway of organics in C nanotubes (CNTs)-catalyzed peroxydisulfate (PDS) activation. The half-wave potentials of twelve phenolic compounds (PCs) were evaluated and correlated to their kinetic rate constants in the PDS/CNTs system. Integrated with quant. structure-activity relations (QSARs), EPR and radical scavenging tests, the nature of nonradical pathway was unveiled to be an electron-transfer regime without singlet oxygenation process. The QSARs accurately predicted the oxidation process of PCs according to their standard electrode potentials, reactive pH and temperature A novel electrochem. anal. method (transient open circuit potential combined with chronoamperometry) was employed to probe the mechanism, suggesting that PDS was firstly catalyzed by CNTs to form a surface-confined CNTs-PDS* complex with a high redox potential. Then, the CNTs-PDS* selectively abstracted electrons from the co-adsorbed PCs to initiate the oxidation Finally, a comparison of PDS/CNTs and graphite anodic oxidation under constant potentials was comprehensively analyzed to unveil the relative activity of the nonradical CNTs-PDS complexes toward different PCs, which was determined by the oxidative potentials of the CNTs-PDS* complex and the adsorbed organics

2403-88-5, 2,2,6,6-Tetramethyl-4-piperidinol(TEMPO) is a useful research compound. Its molecular formula is C9H19NO and its molecular weight is 157.25 g/mol. The purity is usually 95%.
TEMPO is an intermediate used in the preparation of Piperidinyloxy free radical derivatives.
TEMPO is an organic compound that acts as a radical scavenger. It is stable in the presence of water and air and can be used for the inhibition of bacterial growth. TEMPO reacts with reactive intermediates to form non-reactive substances and terminate chain reactions. This process is optimal at temperatures between 0°C and 40°C and pH values between 3.5 and 7.5. TEMPO has been shown to inhibit the growth of bacteria by reacting with reactive molecules such as amines, chlorides, or low energy radicals in aqueous solution. TEMPO also has genotoxic activity that inhibits DNA synthesis in bacterial cells through oxidation of guanine residues on DNA molecules., Recommanded Product: 2,2,6,6-Tetramethyl-4-piperidinol

Referemce:
Piperidine – Wikipedia,
Piperidine | C5H11N – PubChem

 

Reichle, Alexander team published research on Chemical Communications (Cambridge, United Kingdom) in 2022 | 84358-13-4

84358-13-4, N-BOC-piperidine-4-carboxylic acid, also known asN-Boc-isonipecotic acid , is a useful research compound. Its molecular formula is C11H19NO4 and its molecular weight is 229,28 g/mole. The purity is usually 95%.

N-Boc-isonipecotic acid is a potent antitumor agent that has been clinically shown to be effective against leukemia and lymphoma. It has potent antibacterial activity against Gram-positive bacteria such as Staphylococcus aureus and Streptococcus pyogenes. N-Boc-isonipecotic acid binds to the gyrase enzyme, which is used by these bacteria to maintain the integrity of their DNA, inhibiting protein synthesis and cell division. This drug also has anti-inflammatory properties. N-Boc-isonipecotic acid inhibits prostaglandin synthesis in cells, which may be due to its ability to inhibit the production of tumor necrosis factor α (TNFα) in macrophages., Formula: C11H19NO4

Piperidine the name comes from the genus name Piper, which is the Latin word for pepper. 84358-13-4, formula is C11H19NO4, Name is 1-(tert-Butoxycarbonyl)piperidine-4-carboxylic acid. Although piperidine is a common organic compound, it is best known as a representative structure element within many pharmaceuticals and alkaloids, such as natural-occurring solenopsins. Formula: C11H19NO4.

Reichle, Alexander;Sterzel, Hannes;Kreitmeier, Peter;Fayad, Remi;Castellano, Felix N.;Rehbein, Julia;Reiser, Oliver research published 《 Copper(II)-photocatalyzed decarboxylative oxygenation of carboxylic acids》, the research content is summarized as follows. Showcasing the concept of light-induced homolysis for the generation of radicals, the CuII-photocatalyzed decarboxylative oxygenation of carboxylic acids with mol. oxygen as the terminal oxidant was described. Two CuII-carboxylate complexes with different coordination geometries were synthesized and characterized by X-ray anal., correlating their structure with their ability to initiate light-induced decarboxylations.

84358-13-4, N-BOC-piperidine-4-carboxylic acid, also known asN-Boc-isonipecotic acid , is a useful research compound. Its molecular formula is C11H19NO4 and its molecular weight is 229,28 g/mole. The purity is usually 95%.

N-Boc-isonipecotic acid is a potent antitumor agent that has been clinically shown to be effective against leukemia and lymphoma. It has potent antibacterial activity against Gram-positive bacteria such as Staphylococcus aureus and Streptococcus pyogenes. N-Boc-isonipecotic acid binds to the gyrase enzyme, which is used by these bacteria to maintain the integrity of their DNA, inhibiting protein synthesis and cell division. This drug also has anti-inflammatory properties. N-Boc-isonipecotic acid inhibits prostaglandin synthesis in cells, which may be due to its ability to inhibit the production of tumor necrosis factor α (TNFα) in macrophages., Formula: C11H19NO4

Referemce:
Piperidine – Wikipedia,
Piperidine | C5H11N – PubChem

 

Reiberger, Robert team published research on International Journal of Molecular Sciences in 2021 | 5382-16-1

SDS of cas: 5382-16-1, 4-Hydroxypiperidine is a molecule with a carbonyl group. It is the most active and selective CCR5 receptor antagonist that has been studied to date. 4-Hydroxypiperidine inhibits HIV infection by preventing the binding of HIV to its receptor on the surface of white blood cells, thereby preventing it from entering these cells. 4-Hydroxypiperidine also acts as an anti-inflammatory agent in chronic bronchitis patients, due to its ability to inhibit prostaglandin synthesis. The chemical ionization mass spectra of this molecule show peaks for methyl ethyl, malic acid, and hydroxyl groups. These properties make 4-hydroxypiperidine a useful candidate for drug development against inflammatory diseases and several cancers.
The molecular structure, vibrational spectra, NBO and UV-spectral analysis of 4-Hydroxypiperidine have been studied. The compounds with a substituted 4-piperidinol core have been found to be potent antagonists of the human H receptor., 5382-16-1.

Piperidine is an organic compound with the molecular formula (CH2)5NH. This heterocyclic amine consists of a six-membered ring containing five methylene bridges (–CH2–) and one amine bridge (–NH–). 5382-16-1, formula is C5H11NO, Name is 4-Piperidinol. It is a colorless liquid with an odor described as objectionable, and typical of amines. SDS of cas: 5382-16-1.

Reiberger, Robert;Radilova, Katerina;Kral, Michal;Zima, Vaclav;Majer, Pavel;Brynda, Jiri;Dracinsky, Martin;Konvalinka, Jan;Kozisek, Milan;Machara, Ales research published 《 Synthesis and In Vitro Evaluation of C-7 and C-8 Luteolin Derivatives as Influenza Endonuclease Inhibitors》, the research content is summarized as follows. The part of the influenza polymerase PA subunit featuring endonuclease activity is a target for anti-influenza therapies, including the FDA-approved drug Xofluza. A general feature of endonuclease inhibitors is their ability to chelate Mg2+ or Mn2+ ions located in the enzyme′s catalytic site. Previously, we screened a panel of flavonoids for PA inhibition and found luteolin and its C-glucoside orientin to be potent inhibitors. Through structural anal., we identified the presence of a 3′,4′-dihydroxyphenyl moiety as a crucial feature for sub-micromolar inhibitory activity. Here, we report results from a subsequent investigation exploring structural changes at the C-7 and C-8 positions of luteolin. Exptl. IC50 values were determined by AlphaScreen technol. The most potent inhibitors were C-8 derivatives with inhibitory potencies comparable to that of luteolin. Bio-isosteric replacement of the C-7 hydroxyl moiety of luteolin led to a series of compounds with one-order-of-magnitude-lower inhibitory potencies. Using X-ray crystallog., we solved structures of the wild-type PA-N-terminal domain and its I38T mutant in complex with orientin at 1.9 Å and 2.2 Å resolution, resp.

SDS of cas: 5382-16-1, 4-Hydroxypiperidine is a molecule with a carbonyl group. It is the most active and selective CCR5 receptor antagonist that has been studied to date. 4-Hydroxypiperidine inhibits HIV infection by preventing the binding of HIV to its receptor on the surface of white blood cells, thereby preventing it from entering these cells. 4-Hydroxypiperidine also acts as an anti-inflammatory agent in chronic bronchitis patients, due to its ability to inhibit prostaglandin synthesis. The chemical ionization mass spectra of this molecule show peaks for methyl ethyl, malic acid, and hydroxyl groups. These properties make 4-hydroxypiperidine a useful candidate for drug development against inflammatory diseases and several cancers.
The molecular structure, vibrational spectra, NBO and UV-spectral analysis of 4-Hydroxypiperidine have been studied. The compounds with a substituted 4-piperidinol core have been found to be potent antagonists of the human H receptor., 5382-16-1.

Referemce:
Piperidine – Wikipedia,
Piperidine | C5H11N – PubChem

 

Rayaroth, Manoj P. team published research on Journal of Colloid and Interface Science in 2021 | 2403-88-5

2403-88-5, 2,2,6,6-Tetramethyl-4-piperidinol(TEMPO) is a useful research compound. Its molecular formula is C9H19NO and its molecular weight is 157.25 g/mol. The purity is usually 95%.
TEMPO is an intermediate used in the preparation of Piperidinyloxy free radical derivatives.
TEMPO is an organic compound that acts as a radical scavenger. It is stable in the presence of water and air and can be used for the inhibition of bacterial growth. TEMPO reacts with reactive intermediates to form non-reactive substances and terminate chain reactions. This process is optimal at temperatures between 0°C and 40°C and pH values between 3.5 and 7.5. TEMPO has been shown to inhibit the growth of bacteria by reacting with reactive molecules such as amines, chlorides, or low energy radicals in aqueous solution. TEMPO also has genotoxic activity that inhibits DNA synthesis in bacterial cells through oxidation of guanine residues on DNA molecules., Name: 2,2,6,6-Tetramethyl-4-piperidinol

Piperidine the name comes from the genus name Piper, which is the Latin word for pepper. 2403-88-5, formula is C9H19NO, Name is 2,2,6,6-Tetramethyl-4-piperidinol. Although piperidine is a common organic compound, it is best known as a representative structure element within many pharmaceuticals and alkaloids, such as natural-occurring solenopsins. Name: 2,2,6,6-Tetramethyl-4-piperidinol.

Rayaroth, Manoj P.;Oh, Dasom;Lee, Chung-Seop;Kumari, Nitee;Lee, In Su;Chang, Yoon-Seok research published 《 Carbon-nitride-based micromotor driven by chromate-hydrogen peroxide redox system: Application for removal of sulfamethaxazole》, the research content is summarized as follows. In this study, a Janus Fe/C3N4 micromotor driven by a chromate-hydrogen peroxide (Cr(VI)/H2O2) redox system was developed and its movement was analyzed. The motion of the micromotor was tracked via nanoparticle tracking anal. (NTA) and the corresponding diffusion coefficients (D) were determined The NTA results revealed that D = 0 in water in the absence of additives (Cr(VI) or H2O2). The addition of H2O2 resulted in an increase in D from 0 to 12 x 106 nm2 s-1, which further increased to 20 x 106, 26.5 x 106, 29 x 106, and 44 x 106 nm2 s-1 with the addition of 0.5, 1, 2, and 5 ppm of Cr(VI), resp. Cr(VI) alone did not efficiently propel the Fe/C3N4-based micromotor. Therefore, it was proposed that the Cr(VI)/H2O2 redox system generates O2, which plays a major role in the movement of the C3N4-based micromotor. In addition, the formation of reactive species, such as ·OH and 1O2, was confirmed through ESR experiments The reactive species efficiently degraded sulfamethaxazole (SMX), an organic pollutant, as demonstrated through degradation studies and product analyses. The effects of various parameters, such as H2O2 concentration, Cr(VI) concentration, and initial pH on the movement of micromotor and degradation of SMX were also documented.

2403-88-5, 2,2,6,6-Tetramethyl-4-piperidinol(TEMPO) is a useful research compound. Its molecular formula is C9H19NO and its molecular weight is 157.25 g/mol. The purity is usually 95%.
TEMPO is an intermediate used in the preparation of Piperidinyloxy free radical derivatives.
TEMPO is an organic compound that acts as a radical scavenger. It is stable in the presence of water and air and can be used for the inhibition of bacterial growth. TEMPO reacts with reactive intermediates to form non-reactive substances and terminate chain reactions. This process is optimal at temperatures between 0°C and 40°C and pH values between 3.5 and 7.5. TEMPO has been shown to inhibit the growth of bacteria by reacting with reactive molecules such as amines, chlorides, or low energy radicals in aqueous solution. TEMPO also has genotoxic activity that inhibits DNA synthesis in bacterial cells through oxidation of guanine residues on DNA molecules., Name: 2,2,6,6-Tetramethyl-4-piperidinol

Referemce:
Piperidine – Wikipedia,
Piperidine | C5H11N – PubChem

 

Ray, Rajdeep team published research on Molecular Systems Design & Engineering in 2022 | 5382-16-1

5382-16-1, 4-Hydroxypiperidine is a molecule with a carbonyl group. It is the most active and selective CCR5 receptor antagonist that has been studied to date. 4-Hydroxypiperidine inhibits HIV infection by preventing the binding of HIV to its receptor on the surface of white blood cells, thereby preventing it from entering these cells. 4-Hydroxypiperidine also acts as an anti-inflammatory agent in chronic bronchitis patients, due to its ability to inhibit prostaglandin synthesis. The chemical ionization mass spectra of this molecule show peaks for methyl ethyl, malic acid, and hydroxyl groups. These properties make 4-hydroxypiperidine a useful candidate for drug development against inflammatory diseases and several cancers.
The molecular structure, vibrational spectra, NBO and UV-spectral analysis of 4-Hydroxypiperidine have been studied. The compounds with a substituted 4-piperidinol core have been found to be potent antagonists of the human H receptor., Product Details of C5H11NO

Piperidine the name comes from the genus name Piper, which is the Latin word for pepper. 5382-16-1, formula is C5H11NO, Name is 4-Piperidinol. Although piperidine is a common organic compound, it is best known as a representative structure element within many pharmaceuticals and alkaloids, such as natural-occurring solenopsins. Product Details of C5H11NO.

Ray, Rajdeep;Birangal, Sumit Raosaheb;Fathima, Fajeelath;Boshoff, Helena I.;Forbes, He Eun;Hariharapura, Raghu Chandrashekhar;Shenoy, G. Gautham research published 《 Molecular insights into Mmpl3 lead to the development of novel indole-2-carboxamides as antitubercular agents》, the research content is summarized as follows. Tuberculosis (TB) is an air-borne infectious disease and is the leading cause of death among all infectious diseases globally. The current treatment regimen for TB is overtly long and patient non-compliance often leads to drug resistant TB resulting in a need to develop new drugs that will act via novel mechanisms. In this research work, we selected mycobacterial membrane protein Large 3 (MmpL3) as the drug target and indole-2-carboximide as our mol. of interest for further designing new mols. A homol. model was prepared for Mycobacterium tuberculosis MmpL3 from the crystal structure of Mycobacterium smegmatis MmpL3. A series of indoles which are known to be MmpL3 inhibitors were docked in the prepared protein and the binding site properties were identified. Based on that, 10 mols. were designed and synthesized and their antitubercular activities were evaluated. We identified four hits among which the highest potency candidate possessed a min. inhibitory concentration (MIC) of 1.56 μM at 2 wk. Finally, mol. dynamics simulation studies were done with 3b and a previously reported MmpL3 inhibitor to understand the intricacies of their binding in real time and to correlate the exptl. findings with the simulation data.

5382-16-1, 4-Hydroxypiperidine is a molecule with a carbonyl group. It is the most active and selective CCR5 receptor antagonist that has been studied to date. 4-Hydroxypiperidine inhibits HIV infection by preventing the binding of HIV to its receptor on the surface of white blood cells, thereby preventing it from entering these cells. 4-Hydroxypiperidine also acts as an anti-inflammatory agent in chronic bronchitis patients, due to its ability to inhibit prostaglandin synthesis. The chemical ionization mass spectra of this molecule show peaks for methyl ethyl, malic acid, and hydroxyl groups. These properties make 4-hydroxypiperidine a useful candidate for drug development against inflammatory diseases and several cancers.
The molecular structure, vibrational spectra, NBO and UV-spectral analysis of 4-Hydroxypiperidine have been studied. The compounds with a substituted 4-piperidinol core have been found to be potent antagonists of the human H receptor., Product Details of C5H11NO

Referemce:
Piperidine – Wikipedia,
Piperidine | C5H11N – PubChem

 

Qu, Ruijuan team published research on Environmental Science & Technology in 2018 | 2403-88-5

Product Details of C9H19NO, 2,2,6,6-Tetramethyl-4-piperidinol(TEMPO) is a useful research compound. Its molecular formula is C9H19NO and its molecular weight is 157.25 g/mol. The purity is usually 95%.
TEMPO is an intermediate used in the preparation of Piperidinyloxy free radical derivatives.
TEMPO is an organic compound that acts as a radical scavenger. It is stable in the presence of water and air and can be used for the inhibition of bacterial growth. TEMPO reacts with reactive intermediates to form non-reactive substances and terminate chain reactions. This process is optimal at temperatures between 0°C and 40°C and pH values between 3.5 and 7.5. TEMPO has been shown to inhibit the growth of bacteria by reacting with reactive molecules such as amines, chlorides, or low energy radicals in aqueous solution. TEMPO also has genotoxic activity that inhibits DNA synthesis in bacterial cells through oxidation of guanine residues on DNA molecules., 2403-88-5.

Piperidine is an organic compound with the molecular formula (CH2)5NH. This heterocyclic amine consists of a six-membered ring containing five methylene bridges (–CH2–) and one amine bridge (–NH–). 2403-88-5, formula is C9H19NO, Name is 2,2,6,6-Tetramethyl-4-piperidinol. It is a colorless liquid with an odor described as objectionable, and typical of amines. Product Details of C9H19NO.

Qu, Ruijuan;Li, Chenguang;Liu, Jiaoqin;Xiao, Ruiyang;Pan, Xiaoxue;Zeng, Xiaolan;Wang, Zunyao;Wu, Jichun research published 《 Hydroxyl Radical Based Photocatalytic Degradation of Halogenated Organic Contaminants and Paraffin on Silica Gel》, the research content is summarized as follows. Photochem. materials are of scientific and practical importance in the field of photocatalysis. In this study, the photochem. of several organic contaminants, including decabromodiphenyl ether (BDE-209), halogenated phenols (C6X5OH, X = F, Cl, Br) and paraffin, on silica gel (SG) surface was investigated under simulated solar irradiation conditions. Photolysis of these compounds at the solid/air interface proceeds with different rates yielding various hydroxylation products, and hydroxyl radical was determined as the major reactive species. According to d. functional theory (DFT) calculations, the reaction of phys. adsorbed water with reactive silanone sites (>Si=O) on silica was indispensable for the generation of OH radical, where the required energy matches well with the irradiation energy of visible light. Then, the BDE-209 was selected as a representative compound to evaluate the photocatalytic performance of SG under different conditions. The SG material showed good stability in the photodegradation process, and was able to effectively eliminate BDE-209 under natural sunlight. These findings provide new insights into the potential application of SG as a solid surface photocatalyst for contaminants removal.

Product Details of C9H19NO, 2,2,6,6-Tetramethyl-4-piperidinol(TEMPO) is a useful research compound. Its molecular formula is C9H19NO and its molecular weight is 157.25 g/mol. The purity is usually 95%.
TEMPO is an intermediate used in the preparation of Piperidinyloxy free radical derivatives.
TEMPO is an organic compound that acts as a radical scavenger. It is stable in the presence of water and air and can be used for the inhibition of bacterial growth. TEMPO reacts with reactive intermediates to form non-reactive substances and terminate chain reactions. This process is optimal at temperatures between 0°C and 40°C and pH values between 3.5 and 7.5. TEMPO has been shown to inhibit the growth of bacteria by reacting with reactive molecules such as amines, chlorides, or low energy radicals in aqueous solution. TEMPO also has genotoxic activity that inhibits DNA synthesis in bacterial cells through oxidation of guanine residues on DNA molecules., 2403-88-5.

Referemce:
Piperidine – Wikipedia,
Piperidine | C5H11N – PubChem

 

Qiu, Jingying team published research on European Journal of Medicinal Chemistry in 2022 | 5382-16-1

Synthetic Route of 5382-16-1, 4-Hydroxypiperidine is a molecule with a carbonyl group. It is the most active and selective CCR5 receptor antagonist that has been studied to date. 4-Hydroxypiperidine inhibits HIV infection by preventing the binding of HIV to its receptor on the surface of white blood cells, thereby preventing it from entering these cells. 4-Hydroxypiperidine also acts as an anti-inflammatory agent in chronic bronchitis patients, due to its ability to inhibit prostaglandin synthesis. The chemical ionization mass spectra of this molecule show peaks for methyl ethyl, malic acid, and hydroxyl groups. These properties make 4-hydroxypiperidine a useful candidate for drug development against inflammatory diseases and several cancers.
The molecular structure, vibrational spectra, NBO and UV-spectral analysis of 4-Hydroxypiperidine have been studied. The compounds with a substituted 4-piperidinol core have been found to be potent antagonists of the human H receptor., 5382-16-1.

Industrially, piperidine is produced by the hydrogenation of pyridine, usually over a molybdenum disulfide catalyst: C5H5N + 3 H2 → C5H10NH. 5382-16-1, formula is C5H11NO, Name is 4-Piperidinol. Pyridine can also be reduced to piperidine via a modified Birch reduction using sodium in ethanol. Synthetic Route of 5382-16-1.

Qiu, Jingying;Zhou, Qingqing;Zou, Yueting;Li, Shuqiong;Yang, Lihua;Chen, Wang;Gao, Jian;Gu, Xiaoke research published 《 Design and synthesis of novel quinazolinone derivatives as anti-HBV agents with TLR8 agonist effect》, the research content is summarized as follows. In this work, a series of novel quinazolinone derivatives I [R1 = benzyl, 2-furylmethyl, 2-thienylmethyl, etc.; R2 = H, 2-MeO, 3-F, etc.; R3 = (4-methylpiperazin-1-yl), (4-hydroxy-1-piperidyl), (2-aminopyrimidin-4-yl)oxy, etc.] were synthesized and evaluated as novel anti-HBV agents. Among them, compound I [R1 = 2-furylmethyl; R2 = 2-MeO; R3 = (2-aminopyrimidin-4-yl)oxy] exhibited potent inhibitory effect on HBV DNA replication in both wild type and drug resistant (lamivudine and entecavir) HBV strains with IC50 values of 0.15 and 0.10μM, resp. Notably, the selective index value of I [R1 = 2-furylmethyl; R2 = 2-MeO; R3 = (2-aminopyrimidin-4-yl)oxy] was high above 66.67, indicating the favorable safety profile. Mol. docking study indicated that compound I [R1 = 2-furylmethyl; R2 = 2-MeO; R3 = (2-aminopyrimidin-4-yl)oxy] well fitted into the binding pocket of TLR8 protein-protein interface. Dual-luciferase reporter gene assay further confirmed that compound I [R1 = 2-furylmethyl; R2 = 2-MeO; R3 = (2-aminopyrimidin-4-yl)oxy] could dose-dependently activate TLR8, thus effectively inducing the activity of TLR8-dependent NF-κB. Collectively, compound I [R1 = 2-furylmethyl; R2 = 2-MeO; R3 = (2-aminopyrimidin-4-yl)oxy] displayed potent anti-HBV activities and TLR8 agonist effect in vitro, and might be a potential immunomodulatory anti-HBV agent to warrant further investigation.

Synthetic Route of 5382-16-1, 4-Hydroxypiperidine is a molecule with a carbonyl group. It is the most active and selective CCR5 receptor antagonist that has been studied to date. 4-Hydroxypiperidine inhibits HIV infection by preventing the binding of HIV to its receptor on the surface of white blood cells, thereby preventing it from entering these cells. 4-Hydroxypiperidine also acts as an anti-inflammatory agent in chronic bronchitis patients, due to its ability to inhibit prostaglandin synthesis. The chemical ionization mass spectra of this molecule show peaks for methyl ethyl, malic acid, and hydroxyl groups. These properties make 4-hydroxypiperidine a useful candidate for drug development against inflammatory diseases and several cancers.
The molecular structure, vibrational spectra, NBO and UV-spectral analysis of 4-Hydroxypiperidine have been studied. The compounds with a substituted 4-piperidinol core have been found to be potent antagonists of the human H receptor., 5382-16-1.

Referemce:
Piperidine – Wikipedia,
Piperidine | C5H11N – PubChem

 

Qiu, Jingying team published research on Chemistry & Biodiversity in 2022 | 5382-16-1

Electric Literature of 5382-16-1, 4-Hydroxypiperidine is a molecule with a carbonyl group. It is the most active and selective CCR5 receptor antagonist that has been studied to date. 4-Hydroxypiperidine inhibits HIV infection by preventing the binding of HIV to its receptor on the surface of white blood cells, thereby preventing it from entering these cells. 4-Hydroxypiperidine also acts as an anti-inflammatory agent in chronic bronchitis patients, due to its ability to inhibit prostaglandin synthesis. The chemical ionization mass spectra of this molecule show peaks for methyl ethyl, malic acid, and hydroxyl groups. These properties make 4-hydroxypiperidine a useful candidate for drug development against inflammatory diseases and several cancers.
The molecular structure, vibrational spectra, NBO and UV-spectral analysis of 4-Hydroxypiperidine have been studied. The compounds with a substituted 4-piperidinol core have been found to be potent antagonists of the human H receptor., 5382-16-1.

Piperidine structural motif is present in numerous natural alkaloids. These include piperine, which gives black pepper its spicy taste. This gave the compound its name. 5382-16-1, formula is C5H11NO, Name is 4-Piperidinol. Other examples are the fire ant toxin solenopsin, the nicotine analog anabasine of tree tobacco (Nicotiana glauca), lobeline of Indian tobacco. Electric Literature of 5382-16-1.

Qiu, Jingying;Zou, Yueting;Liu, Qingchuan;Jiang, Chunyu;Zhou, Qingqing;Li, Shuqiong;Chen, Wang;Li, Zheng;Gu, Xiaoke research published 《 Synthesis and Evaluation of Novel Quinazolinone Derivatives as Potential Anti-HCC Agents》, the research content is summarized as follows. Hepatocellular carcinoma (HCC), a common malignancy worldwide, has a high mortality rate and limited effective therapeutic options. In this work, a series of quinazolinone compounds (6a-t and 7a-i) were synthesized as potential anti-HCC agents. Among them, compound 7b more potently inhibited HepG2, HUH7 and SK-Hep-1 cells proliferation than classical anti-HCC drug sorafenib, indicating its potential anti-HCC effect. Interestingly, 7b could dose-dependently decrease Cyclin D1 and CDK2 levels, and increase p21 protein expression, thus inducing HepG2 cells cycle arrest at G0/G1 phase. In addition, 7b also displayed potent apoptosis-induced effect on HepG2 cells by interfering Hepatocellular carcinoma, Bcl-2 and Bcl-xl proteins expression. Notably, 7b could efficiently block the activity of PI3K pathway by dose-dependently reducing the phosphorylation of PI3K (Y607) and AKT (S473). Moreover, predicted ADME properties indicated that 7b possessed a good pharmacokinetic profile. Collectively, compound 7b might be a promising lead to the development of novel therapeutic agents towards HCC.

Electric Literature of 5382-16-1, 4-Hydroxypiperidine is a molecule with a carbonyl group. It is the most active and selective CCR5 receptor antagonist that has been studied to date. 4-Hydroxypiperidine inhibits HIV infection by preventing the binding of HIV to its receptor on the surface of white blood cells, thereby preventing it from entering these cells. 4-Hydroxypiperidine also acts as an anti-inflammatory agent in chronic bronchitis patients, due to its ability to inhibit prostaglandin synthesis. The chemical ionization mass spectra of this molecule show peaks for methyl ethyl, malic acid, and hydroxyl groups. These properties make 4-hydroxypiperidine a useful candidate for drug development against inflammatory diseases and several cancers.
The molecular structure, vibrational spectra, NBO and UV-spectral analysis of 4-Hydroxypiperidine have been studied. The compounds with a substituted 4-piperidinol core have been found to be potent antagonists of the human H receptor., 5382-16-1.

Referemce:
Piperidine – Wikipedia,
Piperidine | C5H11N – PubChem

 

Punetha, Ankita team published research on RSC Medicinal Chemistry in 2021 | 5382-16-1

Category: piperidines, 4-Hydroxypiperidine is a molecule with a carbonyl group. It is the most active and selective CCR5 receptor antagonist that has been studied to date. 4-Hydroxypiperidine inhibits HIV infection by preventing the binding of HIV to its receptor on the surface of white blood cells, thereby preventing it from entering these cells. 4-Hydroxypiperidine also acts as an anti-inflammatory agent in chronic bronchitis patients, due to its ability to inhibit prostaglandin synthesis. The chemical ionization mass spectra of this molecule show peaks for methyl ethyl, malic acid, and hydroxyl groups. These properties make 4-hydroxypiperidine a useful candidate for drug development against inflammatory diseases and several cancers.
The molecular structure, vibrational spectra, NBO and UV-spectral analysis of 4-Hydroxypiperidine have been studied. The compounds with a substituted 4-piperidinol core have been found to be potent antagonists of the human H receptor., 5382-16-1.

Industrially, piperidine is produced by the hydrogenation of pyridine, usually over a molybdenum disulfide catalyst: C5H5N + 3 H2 → C5H10NH. 5382-16-1, formula is C5H11NO, Name is 4-Piperidinol. Pyridine can also be reduced to piperidine via a modified Birch reduction using sodium in ethanol. Category: piperidines.

Punetha, Ankita;Green, Keith D.;Garzan, Atefeh;Thamban Chandrika, Nishad;Willby, Melisa J.;Pang, Allan H.;Hou, Caixia;Holbrook, Selina Y. L.;Krieger, Kyle;Posey, James E.;Parish, Tanya;Tsodikov, Oleg V.;Garneau-Tsodikova, Sylvie research published 《 Structure-based design of haloperidol analogues as inhibitors of acetyltransferase Eis from Mycobacterium tuberculosis to overcome kanamycin resistance》, the research content is summarized as follows. Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb), is a deadly bacterial disease. Drug-resistant strains of Mtb make eradication of TB a daunting task. Overexpression of the enhanced intracellular survival (Eis) protein by Mtb confers resistance to the second-line antibiotic kanamycin (KAN). Eis is an acetyltransferase that acetylates KAN, inactivating its antimicrobial function. Development of Eis inhibitors as KAN adjuvant therapeutics is an attractive path to forestall and overcome KAN resistance. We discovered that an antipsychotic drug, haloperidol (HPD, 1), was a potent Eis inhibitor with IC50 = 0.39 ± 0.08 μM. We determined the crystal structure of the Eis-haloperidol (1) complex, which guided synthesis of 34 analogs. The structure-activity relationship study showed that in addition to haloperidol (1), eight analogs, some of which were smaller than 1, potently inhibited Eis (IC50 ≤ 1 μM). Crystal structures of Eis in complexes with three potent analogs and droperidol (DPD), an antiemetic and antipsychotic, were determined Three compounds partially restored KAN sensitivity of a KAN-resistant Mtb strain K204 overexpressing Eis. The Eis inhibitors generally did not exhibit cytotoxicity against mammalian cells. All tested compounds were modestly metabolically stable in human liver microsomes, exhibiting 30-60% metabolism over the course of the assay. While direct repurposing of haloperidol as an anti-TB agent is unlikely due to its neurotoxicity, this study reveals potential approaches to modifying this chem. scaffold to minimize toxicity and improve metabolic stability, while preserving potent Eis inhibition.

Category: piperidines, 4-Hydroxypiperidine is a molecule with a carbonyl group. It is the most active and selective CCR5 receptor antagonist that has been studied to date. 4-Hydroxypiperidine inhibits HIV infection by preventing the binding of HIV to its receptor on the surface of white blood cells, thereby preventing it from entering these cells. 4-Hydroxypiperidine also acts as an anti-inflammatory agent in chronic bronchitis patients, due to its ability to inhibit prostaglandin synthesis. The chemical ionization mass spectra of this molecule show peaks for methyl ethyl, malic acid, and hydroxyl groups. These properties make 4-hydroxypiperidine a useful candidate for drug development against inflammatory diseases and several cancers.
The molecular structure, vibrational spectra, NBO and UV-spectral analysis of 4-Hydroxypiperidine have been studied. The compounds with a substituted 4-piperidinol core have been found to be potent antagonists of the human H receptor., 5382-16-1.

Referemce:
Piperidine – Wikipedia,
Piperidine | C5H11N – PubChem