Di Porzio, Anna team published research on International Journal of Molecular Sciences in 2021 | 5382-16-1

Category: piperidines, 4-Hydroxypiperidine is a molecule with a carbonyl group. It is the most active and selective CCR5 receptor antagonist that has been studied to date. 4-Hydroxypiperidine inhibits HIV infection by preventing the binding of HIV to its receptor on the surface of white blood cells, thereby preventing it from entering these cells. 4-Hydroxypiperidine also acts as an anti-inflammatory agent in chronic bronchitis patients, due to its ability to inhibit prostaglandin synthesis. The chemical ionization mass spectra of this molecule show peaks for methyl ethyl, malic acid, and hydroxyl groups. These properties make 4-hydroxypiperidine a useful candidate for drug development against inflammatory diseases and several cancers.
The molecular structure, vibrational spectra, NBO and UV-spectral analysis of 4-Hydroxypiperidine have been studied. The compounds with a substituted 4-piperidinol core have been found to be potent antagonists of the human H receptor., 5382-16-1.

Piperidine was first reported in 1850 by the Scottish chemist Thomas Anderson and again, independently, in 1852 by the French chemist 5382-16-1, formula is C5H11NO, Name is 4-Piperidinol. Auguste Cahours, who named it. Both of them obtained piperidine by reacting piperine with nitric acid. Category: piperidines.

Di Porzio, Anna;Galli, Ubaldina;Amato, Jussara;Zizza, Pasquale;Iachettini, Sara;Iaccarino, Nunzia;Marzano, Simona;Santoro, Federica;Brancaccio, Diego;Carotenuto, Alfonso;De Tito, Stefano;Biroccio, Annamaria;Pagano, Bruno;Tron, Gian Cesare;Randazzo, Antonio research published 《 Synthesis and Characterization of Bis-Triazolyl-Pyridine Derivatives as Noncanonical DNA-Interacting Compounds》, the research content is summarized as follows. Besides the well-known double-helical conformation, DNA is capable of folding into various noncanonical arrangements, such as G-quadruplexes (G4s) and i-motifs (iMs), whose occurrence in gene promoters, replication origins, and telomeres highlights the breadth of biol. processes that they might regulate. Particularly, previous studies have reported that G4 and iM structures may play different roles in controlling gene transcription. Anyway, mol. tools able to simultaneously stabilize/destabilize those structures are still needed to shed light on what happens at the biol. level. Herein, a multicomponent reaction and a click chem. functionalization were combined to generate a set of 31 bis-triazolyl-pyridine derivatives which were initially screened by CD for their ability to interact with different G4 and/or iM DNAs and to affect the thermal stability of these structures. All the compounds were then clustered through multivariate data anal., based on such capability. The most promising compounds were subjected to a further biophys. and biol. characterization, leading to the identification of two mols. simultaneously able to stabilize G4s and destabilize iMs, both in vitro and in living cells.

Category: piperidines, 4-Hydroxypiperidine is a molecule with a carbonyl group. It is the most active and selective CCR5 receptor antagonist that has been studied to date. 4-Hydroxypiperidine inhibits HIV infection by preventing the binding of HIV to its receptor on the surface of white blood cells, thereby preventing it from entering these cells. 4-Hydroxypiperidine also acts as an anti-inflammatory agent in chronic bronchitis patients, due to its ability to inhibit prostaglandin synthesis. The chemical ionization mass spectra of this molecule show peaks for methyl ethyl, malic acid, and hydroxyl groups. These properties make 4-hydroxypiperidine a useful candidate for drug development against inflammatory diseases and several cancers.
The molecular structure, vibrational spectra, NBO and UV-spectral analysis of 4-Hydroxypiperidine have been studied. The compounds with a substituted 4-piperidinol core have been found to be potent antagonists of the human H receptor., 5382-16-1.

Referemce:
Piperidine – Wikipedia,
Piperidine | C5H11N – PubChem

 

Deng, Xiao-Jun team published research on Journal of Organic Chemistry in 2021 | 84358-13-4

Reference of 84358-13-4, N-BOC-piperidine-4-carboxylic acid, also known asN-Boc-isonipecotic acid , is a useful research compound. Its molecular formula is C11H19NO4 and its molecular weight is 229,28 g/mole. The purity is usually 95%.

N-Boc-isonipecotic acid is a potent antitumor agent that has been clinically shown to be effective against leukemia and lymphoma. It has potent antibacterial activity against Gram-positive bacteria such as Staphylococcus aureus and Streptococcus pyogenes. N-Boc-isonipecotic acid binds to the gyrase enzyme, which is used by these bacteria to maintain the integrity of their DNA, inhibiting protein synthesis and cell division. This drug also has anti-inflammatory properties. N-Boc-isonipecotic acid inhibits prostaglandin synthesis in cells, which may be due to its ability to inhibit the production of tumor necrosis factor α (TNFα) in macrophages., 84358-13-4.

Industrially, piperidine is produced by the hydrogenation of pyridine, usually over a molybdenum disulfide catalyst: C5H5N + 3 H2 → C5H10NH. 84358-13-4, formula is C11H19NO4, Name is 1-(tert-Butoxycarbonyl)piperidine-4-carboxylic acid. Pyridine can also be reduced to piperidine via a modified Birch reduction using sodium in ethanol. Reference of 84358-13-4.

Deng, Xiao-Jun;Liu, Hui-Xia;Zhang, Lu-Wen;Zhang, Guan-Yu;Yu, Zhi-Xiang;He, Wei research published 《 Iodoarene-Catalyzed Oxyamination of Unactivated Alkenes to Synthesize 5-Imino-2-Tetrahydrofuranyl Methanamine Derivatives》, the research content is summarized as follows. Reported here is the room-temperature metal-free iodoarene-catalyzed oxyamination of unactivated alkenes. In this process, the alkenes are difunctionalized by the oxygen atom of the amide group and the nitrogen in an exogenous HNTs2 mol. This mild and open-air reaction provided an efficient synthesis to N-bistosyl-substituted 5-imino-2-tetrahydrofuranyl methanamine derivatives, which are important motifs in drug development and biol. studies. Mechanistic study based on experiments and d. functional theory calculations showed that this transformation proceeds via activation of the substrate alkene by an in situ generated cationic iodonium(III) intermediate, which is subsequently attacked by an oxygen atom (instead of nitrogen) of amides to form a five-membered ring intermediate. Finally, this intermediate undergoes an SN2 reaction by NTs2 as the nucleophile to give the oxygen and nitrogen difunctionalized 5-imino-2-tetrahydrofuranyl methanamine product. An asym. variant of the present alkene oxyamination using chiral iodoarenes as catalysts also gave promising results for some of the substrates.

Reference of 84358-13-4, N-BOC-piperidine-4-carboxylic acid, also known asN-Boc-isonipecotic acid , is a useful research compound. Its molecular formula is C11H19NO4 and its molecular weight is 229,28 g/mole. The purity is usually 95%.

N-Boc-isonipecotic acid is a potent antitumor agent that has been clinically shown to be effective against leukemia and lymphoma. It has potent antibacterial activity against Gram-positive bacteria such as Staphylococcus aureus and Streptococcus pyogenes. N-Boc-isonipecotic acid binds to the gyrase enzyme, which is used by these bacteria to maintain the integrity of their DNA, inhibiting protein synthesis and cell division. This drug also has anti-inflammatory properties. N-Boc-isonipecotic acid inhibits prostaglandin synthesis in cells, which may be due to its ability to inhibit the production of tumor necrosis factor α (TNFα) in macrophages., 84358-13-4.

Referemce:
Piperidine – Wikipedia,
Piperidine | C5H11N – PubChem

 

Delgado, Jose A. C. team published research on Organic Letters in 2021 | 84358-13-4

84358-13-4, N-BOC-piperidine-4-carboxylic acid, also known asN-Boc-isonipecotic acid , is a useful research compound. Its molecular formula is C11H19NO4 and its molecular weight is 229,28 g/mole. The purity is usually 95%.

N-Boc-isonipecotic acid is a potent antitumor agent that has been clinically shown to be effective against leukemia and lymphoma. It has potent antibacterial activity against Gram-positive bacteria such as Staphylococcus aureus and Streptococcus pyogenes. N-Boc-isonipecotic acid binds to the gyrase enzyme, which is used by these bacteria to maintain the integrity of their DNA, inhibiting protein synthesis and cell division. This drug also has anti-inflammatory properties. N-Boc-isonipecotic acid inhibits prostaglandin synthesis in cells, which may be due to its ability to inhibit the production of tumor necrosis factor α (TNFα) in macrophages., Related Products of 84358-13-4

Industrially, piperidine is produced by the hydrogenation of pyridine, usually over a molybdenum disulfide catalyst: C5H5N + 3 H2 → C5H10NH. 84358-13-4, formula is C11H19NO4, Name is 1-(tert-Butoxycarbonyl)piperidine-4-carboxylic acid. Pyridine can also be reduced to piperidine via a modified Birch reduction using sodium in ethanol. Related Products of 84358-13-4.

Delgado, Jose A. C.;Correia, Jose T. M.;Pissinati, Emanuele F.;Paixao, Marcio W. research published 《 Biocompatible photoinduced alkylation of dehydroalanine for the synthesis of unnatural α-amino acids》, the research content is summarized as follows. A site-selective alkylation of dehydroalanine to access protected unnatural amino acids is described. The protocol is characterized by the wide nature of alkyl radicals employed, mild conditions, and functional group compatibility. This protocol is further extended to access peptides, late-stage functionalization of pharmaceuticals, and enantioenriched amino acids.

84358-13-4, N-BOC-piperidine-4-carboxylic acid, also known asN-Boc-isonipecotic acid , is a useful research compound. Its molecular formula is C11H19NO4 and its molecular weight is 229,28 g/mole. The purity is usually 95%.

N-Boc-isonipecotic acid is a potent antitumor agent that has been clinically shown to be effective against leukemia and lymphoma. It has potent antibacterial activity against Gram-positive bacteria such as Staphylococcus aureus and Streptococcus pyogenes. N-Boc-isonipecotic acid binds to the gyrase enzyme, which is used by these bacteria to maintain the integrity of their DNA, inhibiting protein synthesis and cell division. This drug also has anti-inflammatory properties. N-Boc-isonipecotic acid inhibits prostaglandin synthesis in cells, which may be due to its ability to inhibit the production of tumor necrosis factor α (TNFα) in macrophages., Related Products of 84358-13-4

Referemce:
Piperidine – Wikipedia,
Piperidine | C5H11N – PubChem

 

Dai, Xinyan team published research on Bioorganic Chemistry in 2021 | 5382-16-1

Safety of 4-Piperidinol, 4-Hydroxypiperidine is a molecule with a carbonyl group. It is the most active and selective CCR5 receptor antagonist that has been studied to date. 4-Hydroxypiperidine inhibits HIV infection by preventing the binding of HIV to its receptor on the surface of white blood cells, thereby preventing it from entering these cells. 4-Hydroxypiperidine also acts as an anti-inflammatory agent in chronic bronchitis patients, due to its ability to inhibit prostaglandin synthesis. The chemical ionization mass spectra of this molecule show peaks for methyl ethyl, malic acid, and hydroxyl groups. These properties make 4-hydroxypiperidine a useful candidate for drug development against inflammatory diseases and several cancers.
The molecular structure, vibrational spectra, NBO and UV-spectral analysis of 4-Hydroxypiperidine have been studied. The compounds with a substituted 4-piperidinol core have been found to be potent antagonists of the human H receptor., 5382-16-1.

Piperidine structural motif is present in numerous natural alkaloids. These include piperine, which gives black pepper its spicy taste. This gave the compound its name. 5382-16-1, formula is C5H11NO, Name is 4-Piperidinol. Other examples are the fire ant toxin solenopsin, the nicotine analog anabasine of tree tobacco (Nicotiana glauca), lobeline of Indian tobacco. Safety of 4-Piperidinol.

Dai, Xinyan;Wang, Ke;Chen, Hao;Huang, Xupeng;Feng, Zhiqiang research published 《 Design, synthesis, and biological evaluation of 1-methyl-1H-pyrazolo[4,3-b]pyridine derivatives as novel small-molecule inhibitors targeting the PD-1/PD-L1 interaction》, the research content is summarized as follows. Blockade of the programmed cell death-1 (PD-1)/programmed cell death-ligand 1 (PD-L1) signalling pathway is a promising tumor immunotherapeutic approach, and small mol. drugs have more advantages than monoclonal antibody macromols. in clin. applications. Therefore, a series of 1-methyl-1H-pyrazolo[4,3-b]pyridine derivatives as PD-1/PD-L1 interaction novel small-mol. inhibitors were designed employing a ring fusion strategy. The inhibitory activity of compounds was evaluated by the HTRF assay, among which I was identified as the most potent PD-1/PD-L1 interaction inhibitor with an IC50 value of 9.6 nM. Furthermore, I exhibited prominent inhibitory activity against the PD-1/PD-L1 interaction with an EC50 value of 1.61μM in a coculture model of PD-L1/TCR activator-expressing CHO cells and PD-1-expressing Jurkat cells. In addition, the preliminary structure-activity relationships (SARs) of compounds were elucidated, and the binding mode of I with the PD-L1 dimer was analyzed by mol. docking. Overall, I could be employed as a prospective lead compound of PD-1/PD-L1 interaction inhibitors for further development.

Safety of 4-Piperidinol, 4-Hydroxypiperidine is a molecule with a carbonyl group. It is the most active and selective CCR5 receptor antagonist that has been studied to date. 4-Hydroxypiperidine inhibits HIV infection by preventing the binding of HIV to its receptor on the surface of white blood cells, thereby preventing it from entering these cells. 4-Hydroxypiperidine also acts as an anti-inflammatory agent in chronic bronchitis patients, due to its ability to inhibit prostaglandin synthesis. The chemical ionization mass spectra of this molecule show peaks for methyl ethyl, malic acid, and hydroxyl groups. These properties make 4-hydroxypiperidine a useful candidate for drug development against inflammatory diseases and several cancers.
The molecular structure, vibrational spectra, NBO and UV-spectral analysis of 4-Hydroxypiperidine have been studied. The compounds with a substituted 4-piperidinol core have been found to be potent antagonists of the human H receptor., 5382-16-1.

Referemce:
Piperidine – Wikipedia,
Piperidine | C5H11N – PubChem

 

Dai, Jian-Jun team published research on Chinese Chemical Letters in 2022 | 84358-13-4

Related Products of 84358-13-4, N-BOC-piperidine-4-carboxylic acid, also known asN-Boc-isonipecotic acid , is a useful research compound. Its molecular formula is C11H19NO4 and its molecular weight is 229,28 g/mole. The purity is usually 95%.

N-Boc-isonipecotic acid is a potent antitumor agent that has been clinically shown to be effective against leukemia and lymphoma. It has potent antibacterial activity against Gram-positive bacteria such as Staphylococcus aureus and Streptococcus pyogenes. N-Boc-isonipecotic acid binds to the gyrase enzyme, which is used by these bacteria to maintain the integrity of their DNA, inhibiting protein synthesis and cell division. This drug also has anti-inflammatory properties. N-Boc-isonipecotic acid inhibits prostaglandin synthesis in cells, which may be due to its ability to inhibit the production of tumor necrosis factor α (TNFα) in macrophages., 84358-13-4.

Piperidine was first reported in 1850 by the Scottish chemist Thomas Anderson and again, independently, in 1852 by the French chemist 84358-13-4, formula is C11H19NO4, Name is 1-(tert-Butoxycarbonyl)piperidine-4-carboxylic acid. Auguste Cahours, who named it. Both of them obtained piperidine by reacting piperine with nitric acid. Related Products of 84358-13-4.

Dai, Jian-Jun;Teng, Xin-Xin;Fang, Wen;Xu, Jun;Xu, Hua-Jian research published 《 Electrochemically promoted decarboxylative borylation of alkyl N-hydroxyphthalimide esters》, the research content is summarized as follows. An electrochem. promoted decarboxylative borylation reaction is reported. The reaction proceeds under mild conditions in an undivided cell without use of transition metal- or photo-catalysts. The key feature of the reaction is the compatibility of diboron reagents with the electrochem. conditions. This reaction exhibits broad substrate scope, good functional group tolerability, and easy scalability.

Related Products of 84358-13-4, N-BOC-piperidine-4-carboxylic acid, also known asN-Boc-isonipecotic acid , is a useful research compound. Its molecular formula is C11H19NO4 and its molecular weight is 229,28 g/mole. The purity is usually 95%.

N-Boc-isonipecotic acid is a potent antitumor agent that has been clinically shown to be effective against leukemia and lymphoma. It has potent antibacterial activity against Gram-positive bacteria such as Staphylococcus aureus and Streptococcus pyogenes. N-Boc-isonipecotic acid binds to the gyrase enzyme, which is used by these bacteria to maintain the integrity of their DNA, inhibiting protein synthesis and cell division. This drug also has anti-inflammatory properties. N-Boc-isonipecotic acid inhibits prostaglandin synthesis in cells, which may be due to its ability to inhibit the production of tumor necrosis factor α (TNFα) in macrophages., 84358-13-4.

Referemce:
Piperidine – Wikipedia,
Piperidine | C5H11N – PubChem

 

Cunha, Anna C. team published research on Molecular Diversity in 2021 | 2403-88-5

2403-88-5, 2,2,6,6-Tetramethyl-4-piperidinol(TEMPO) is a useful research compound. Its molecular formula is C9H19NO and its molecular weight is 157.25 g/mol. The purity is usually 95%.
TEMPO is an intermediate used in the preparation of Piperidinyloxy free radical derivatives.
TEMPO is an organic compound that acts as a radical scavenger. It is stable in the presence of water and air and can be used for the inhibition of bacterial growth. TEMPO reacts with reactive intermediates to form non-reactive substances and terminate chain reactions. This process is optimal at temperatures between 0°C and 40°C and pH values between 3.5 and 7.5. TEMPO has been shown to inhibit the growth of bacteria by reacting with reactive molecules such as amines, chlorides, or low energy radicals in aqueous solution. TEMPO also has genotoxic activity that inhibits DNA synthesis in bacterial cells through oxidation of guanine residues on DNA molecules., Reference of 2403-88-5

Piperidine the name comes from the genus name Piper, which is the Latin word for pepper. 2403-88-5, formula is C9H19NO, Name is 2,2,6,6-Tetramethyl-4-piperidinol. Although piperidine is a common organic compound, it is best known as a representative structure element within many pharmaceuticals and alkaloids, such as natural-occurring solenopsins. Reference of 2403-88-5.

Cunha, Anna C.;Ferreira, Vitor F.;Vaz, Maria G. F.;Cassaro, Rafael A. Allao;Resende, Jackson A. L. C.;Sacramento, Carolina Q.;Costa, Jessica;Abrantes, Juliana L.;Souza, Thiago Moreno L.;Jordao, Alessandro K. research published 《 Chemistry and anti-herpes simplex virus type 1 evaluation of 4-substituted-1H-1,2,3-triazole-nitroxyl-linked hybrids》, the research content is summarized as follows. Abstract: HSV disease is distributed worldwide. Anti-herpesvirus drugs are a problem in clin. settings, particularly in immunocompromised individuals undergoing herpes simplex virus type 1 infection. In this work, 4-substituted-1,2,3-1H-1,2,3-triazole linked nitroxyl radical derived from TEMPOL were synthesized, and their ability to inhibit the in vitro replication of HSV-1 was evaluated. The nitroxide derivatives were characterized by IR spectroscopy and elemental anal., and three of them had their crystal structures determined by single-crystal X-ray diffraction. Four hybrid mols. showed important anti-HSV-1 activity with IC50 values ranged from 0.80 to 1.32μM. In particular, one of the nitroxide derivatives was more active than Acyclovir (IC50 = 0.99μM). All compounds tested were more selective inhibitors than the reference antiviral drug. Among them, two compounds were 4.5 (IC50 0.80μM; selectivity index CC50/IC50 3886) and 7.7 times (IC50 1.10μM; selectivity index CC50/IC50 6698) more selective than acyclovir (IC50 0.99μM; selectivity index CC50/IC50: 869). These nitroxide derivatives may be elected as leading compounds due to their antiherpetic activities and good selectivity.

2403-88-5, 2,2,6,6-Tetramethyl-4-piperidinol(TEMPO) is a useful research compound. Its molecular formula is C9H19NO and its molecular weight is 157.25 g/mol. The purity is usually 95%.
TEMPO is an intermediate used in the preparation of Piperidinyloxy free radical derivatives.
TEMPO is an organic compound that acts as a radical scavenger. It is stable in the presence of water and air and can be used for the inhibition of bacterial growth. TEMPO reacts with reactive intermediates to form non-reactive substances and terminate chain reactions. This process is optimal at temperatures between 0°C and 40°C and pH values between 3.5 and 7.5. TEMPO has been shown to inhibit the growth of bacteria by reacting with reactive molecules such as amines, chlorides, or low energy radicals in aqueous solution. TEMPO also has genotoxic activity that inhibits DNA synthesis in bacterial cells through oxidation of guanine residues on DNA molecules., Reference of 2403-88-5

Referemce:
Piperidine – Wikipedia,
Piperidine | C5H11N – PubChem

 

Cox, Brian team published research on ACS Medicinal Chemistry Letters in 2020 | 84358-13-4

84358-13-4, N-BOC-piperidine-4-carboxylic acid, also known asN-Boc-isonipecotic acid , is a useful research compound. Its molecular formula is C11H19NO4 and its molecular weight is 229,28 g/mole. The purity is usually 95%.

N-Boc-isonipecotic acid is a potent antitumor agent that has been clinically shown to be effective against leukemia and lymphoma. It has potent antibacterial activity against Gram-positive bacteria such as Staphylococcus aureus and Streptococcus pyogenes. N-Boc-isonipecotic acid binds to the gyrase enzyme, which is used by these bacteria to maintain the integrity of their DNA, inhibiting protein synthesis and cell division. This drug also has anti-inflammatory properties. N-Boc-isonipecotic acid inhibits prostaglandin synthesis in cells, which may be due to its ability to inhibit the production of tumor necrosis factor α (TNFα) in macrophages., Synthetic Route of 84358-13-4

Piperidine is an organic compound with the molecular formula (CH2)5NH. This heterocyclic amine consists of a six-membered ring containing five methylene bridges (–CH2–) and one amine bridge (–NH–). 84358-13-4, formula is C11H19NO4, Name is 1-(tert-Butoxycarbonyl)piperidine-4-carboxylic acid. It is a colorless liquid with an odor described as objectionable, and typical of amines. Synthetic Route of 84358-13-4.

Cox, Brian;Duffy, James;Zdorichenko, Victor;Bellanger, Corentin;Hurcum, Jessica;Laleu, Benoit;Booker-Milburn, Kevin I.;Elliott, Luke D.;Robertson-Ralph, Michael;Swain, Christopher J.;Bishop, Stephen J.;Hallyburton, Irene;Anderson, Mark research published 《 Escaping from Flatland: Antimalarial Activity of sp3-Rich Bridged Pyrrolidine Derivatives》, the research content is summarized as follows. Synthetic photochem. to generate novel sp3-rich scaffolds and report the design, synthesis, and biol. testing of a diverse series of amides based on the 1-(amino-methyl)-2-benzyl-2-aza-bicyclo[2.1.1]hexane scaffold was utilized . Preliminary antimalarial screening of the library provided promising compounds with activity in the 1-5μM range with an enhanced hit rate. Further evaluation (solubility, drug metabolism and pharmacokinetics (DMPK), and toxicity) of a selected compound (9) suggested that this series represents an excellent opportunity for further optimization with the framework offering multiple opportunities for the addition of uniquely vectorally positioned extra functionality.

84358-13-4, N-BOC-piperidine-4-carboxylic acid, also known asN-Boc-isonipecotic acid , is a useful research compound. Its molecular formula is C11H19NO4 and its molecular weight is 229,28 g/mole. The purity is usually 95%.

N-Boc-isonipecotic acid is a potent antitumor agent that has been clinically shown to be effective against leukemia and lymphoma. It has potent antibacterial activity against Gram-positive bacteria such as Staphylococcus aureus and Streptococcus pyogenes. N-Boc-isonipecotic acid binds to the gyrase enzyme, which is used by these bacteria to maintain the integrity of their DNA, inhibiting protein synthesis and cell division. This drug also has anti-inflammatory properties. N-Boc-isonipecotic acid inhibits prostaglandin synthesis in cells, which may be due to its ability to inhibit the production of tumor necrosis factor α (TNFα) in macrophages., Synthetic Route of 84358-13-4

Referemce:
Piperidine – Wikipedia,
Piperidine | C5H11N – PubChem

 

Cheung, Atwood K. team published research on Journal of Medicinal Chemistry in 2018 | 2403-88-5

Category: piperidines, 2,2,6,6-Tetramethyl-4-piperidinol(TEMPO) is a useful research compound. Its molecular formula is C9H19NO and its molecular weight is 157.25 g/mol. The purity is usually 95%.
TEMPO is an intermediate used in the preparation of Piperidinyloxy free radical derivatives.
TEMPO is an organic compound that acts as a radical scavenger. It is stable in the presence of water and air and can be used for the inhibition of bacterial growth. TEMPO reacts with reactive intermediates to form non-reactive substances and terminate chain reactions. This process is optimal at temperatures between 0°C and 40°C and pH values between 3.5 and 7.5. TEMPO has been shown to inhibit the growth of bacteria by reacting with reactive molecules such as amines, chlorides, or low energy radicals in aqueous solution. TEMPO also has genotoxic activity that inhibits DNA synthesis in bacterial cells through oxidation of guanine residues on DNA molecules., 2403-88-5.

Piperidine is an organic compound with the molecular formula (CH2)5NH. This heterocyclic amine consists of a six-membered ring containing five methylene bridges (–CH2–) and one amine bridge (–NH–). 2403-88-5, formula is C9H19NO, Name is 2,2,6,6-Tetramethyl-4-piperidinol. It is a colorless liquid with an odor described as objectionable, and typical of amines. Category: piperidines.

Cheung, Atwood K.;Hurley, Brian;Kerrigan, Ryan;Shu, Lei;Chin, Donovan N.;Shen, Yiping;OBrien, Gary;Sung, Moo Je;Hou, Ying;Axford, Jake;Cody, Emma;Sun, Robert;Fazal, Aleem;Tomlinson, Ronald C.;Jain, Monish;Deng, Lin;Hoffmaster, Keith;Song, Cheng;Van Hoosear, Mailin;Shin, Youngah;Servais, Rebecca;Towler, Christopher;Hild, Marc;Curtis, Daniel;Dietrich, William F.;Hamann, Lawrence G.;Briner, Karin;Chen, Karen S.;Kobayashi, Dione;Sivasankaran, Rajeev;Dales, Natalie A. research published 《 Discovery of Small Molecule Splicing Modulators of Survival Motor Neuron-2 (SMN2) for the Treatment of Spinal Muscular Atrophy (SMA)》, the research content is summarized as follows. Spinal muscular atrophy (SMA), a rare neuromuscular disorder, is the leading genetic cause of death in infants and toddlers. SMA is caused by the deletion or a loss of function mutation of the survival motor neuron 1 (SMN1) gene. In humans, a second closely related gene SMN2 exists, however it codes for a less stable SMN protein. In recent years, significant progress has been made toward disease modifying treatments for SMA by modulating SMN2 pre-mRNA splicing. Herein, we describe the discovery of LMI070/branaplam, a small mol. that stabilizes the interaction between the spliceosome and SMN2 pre-mRNA. Branaplam (1) originated from a high-throughput phenotypic screening hit, pyridazine 2, and evolved via multi-parameter lead optimization. In a severe mouse SMA model, branaplam treatment increased full-length SMN RNA and protein levels, and extended survival. Currently, branaplam is in clin. studies for SMA.

Category: piperidines, 2,2,6,6-Tetramethyl-4-piperidinol(TEMPO) is a useful research compound. Its molecular formula is C9H19NO and its molecular weight is 157.25 g/mol. The purity is usually 95%.
TEMPO is an intermediate used in the preparation of Piperidinyloxy free radical derivatives.
TEMPO is an organic compound that acts as a radical scavenger. It is stable in the presence of water and air and can be used for the inhibition of bacterial growth. TEMPO reacts with reactive intermediates to form non-reactive substances and terminate chain reactions. This process is optimal at temperatures between 0°C and 40°C and pH values between 3.5 and 7.5. TEMPO has been shown to inhibit the growth of bacteria by reacting with reactive molecules such as amines, chlorides, or low energy radicals in aqueous solution. TEMPO also has genotoxic activity that inhibits DNA synthesis in bacterial cells through oxidation of guanine residues on DNA molecules., 2403-88-5.

Referemce:
Piperidine – Wikipedia,
Piperidine | C5H11N – PubChem

 

Cheuka, Peter Mubanga team published research on ACS Infectious Diseases in 2021 | 5382-16-1

5382-16-1, 4-Hydroxypiperidine is a molecule with a carbonyl group. It is the most active and selective CCR5 receptor antagonist that has been studied to date. 4-Hydroxypiperidine inhibits HIV infection by preventing the binding of HIV to its receptor on the surface of white blood cells, thereby preventing it from entering these cells. 4-Hydroxypiperidine also acts as an anti-inflammatory agent in chronic bronchitis patients, due to its ability to inhibit prostaglandin synthesis. The chemical ionization mass spectra of this molecule show peaks for methyl ethyl, malic acid, and hydroxyl groups. These properties make 4-hydroxypiperidine a useful candidate for drug development against inflammatory diseases and several cancers.
The molecular structure, vibrational spectra, NBO and UV-spectral analysis of 4-Hydroxypiperidine have been studied. The compounds with a substituted 4-piperidinol core have been found to be potent antagonists of the human H receptor., Formula: C5H11NO

Industrially, piperidine is produced by the hydrogenation of pyridine, usually over a molybdenum disulfide catalyst: C5H5N + 3 H2 → C5H10NH. 5382-16-1, formula is C5H11NO, Name is 4-Piperidinol. Pyridine can also be reduced to piperidine via a modified Birch reduction using sodium in ethanol. Formula: C5H11NO.

Cheuka, Peter Mubanga;Centani, Luyanda;Arendse, Lauren B.;Fienberg, Stephen;Wambua, Lynn;Renga, Shoneeze S.;Dziwornu, Godwin Akpeko;Kumar, Malkeet;Lawrence, Nina;Taylor, Dale;Wittlin, Sergio;Coertzen, Dina;Reader, Janette;van der Watt, Mariette;Birkholtz, Lyn-Marie;Chibale, Kelly research published 《 New Amidated 3,6-Diphenylated Imidazopyridazines with Potent Antiplasmodium Activity Are Dual Inhibitors of Plasmodium Phosphatidylinositol-4-kinase and cGMP-Dependent Protein Kinase》, the research content is summarized as follows. Recent studies on 3,6-diphenylated imidazopyridazines have demonstrated impressive in vitro activity and in vivo efficacy in mouse models of malaria infection. Herein, we report the synthesis and antiplasmodium evaluation of a new series of amidated analogs and demonstrate that these compounds potently inhibit Plasmodium phosphatidylinositol-4-kinase (PI4K) type IIIβ while moderately inhibiting cyclic guanidine monophosphate (cGMP)-dependent protein kinase (PKG) activity in vitro. Using in silico docking, we predict key binding interactions for these analogs within the ATP (ATP)-binding site of PI4K and PKG, paving the way for structure-based optimization of imidazopyridazines targeting both Plasmodium PI4K and PKG. While several derivatives showed low nanomolar antiplasmodium activity (IC50 < 100 nM), some compounds, including piperazine analog I, resulted in strong dual PI4K and PKG inhibition. The compounds also demonstrated transmission-blocking potential, evident from their potent inhibition of early- and late-stage gametocytes. Finally, the current compounds generally showed improved aqueous solubility and reduced hERG (human ether-a-go-go-related gene) channel inhibition.

5382-16-1, 4-Hydroxypiperidine is a molecule with a carbonyl group. It is the most active and selective CCR5 receptor antagonist that has been studied to date. 4-Hydroxypiperidine inhibits HIV infection by preventing the binding of HIV to its receptor on the surface of white blood cells, thereby preventing it from entering these cells. 4-Hydroxypiperidine also acts as an anti-inflammatory agent in chronic bronchitis patients, due to its ability to inhibit prostaglandin synthesis. The chemical ionization mass spectra of this molecule show peaks for methyl ethyl, malic acid, and hydroxyl groups. These properties make 4-hydroxypiperidine a useful candidate for drug development against inflammatory diseases and several cancers.
The molecular structure, vibrational spectra, NBO and UV-spectral analysis of 4-Hydroxypiperidine have been studied. The compounds with a substituted 4-piperidinol core have been found to be potent antagonists of the human H receptor., Formula: C5H11NO

Referemce:
Piperidine – Wikipedia,
Piperidine | C5H11N – PubChem

 

Chen, Zimin team published research on ChemPhotoChem in 2021 | 5382-16-1

5382-16-1, 4-Hydroxypiperidine is a molecule with a carbonyl group. It is the most active and selective CCR5 receptor antagonist that has been studied to date. 4-Hydroxypiperidine inhibits HIV infection by preventing the binding of HIV to its receptor on the surface of white blood cells, thereby preventing it from entering these cells. 4-Hydroxypiperidine also acts as an anti-inflammatory agent in chronic bronchitis patients, due to its ability to inhibit prostaglandin synthesis. The chemical ionization mass spectra of this molecule show peaks for methyl ethyl, malic acid, and hydroxyl groups. These properties make 4-hydroxypiperidine a useful candidate for drug development against inflammatory diseases and several cancers.
The molecular structure, vibrational spectra, NBO and UV-spectral analysis of 4-Hydroxypiperidine have been studied. The compounds with a substituted 4-piperidinol core have been found to be potent antagonists of the human H receptor., Formula: C5H11NO

Piperidine is an organic compound with the molecular formula (CH2)5NH. This heterocyclic amine consists of a six-membered ring containing five methylene bridges (–CH2–) and one amine bridge (–NH–). 5382-16-1, formula is C5H11NO, Name is 4-Piperidinol. It is a colorless liquid with an odor described as objectionable, and typical of amines. Formula: C5H11NO.

Chen, Zimin;Zheng, Songlin;Wang, Zijie;Liao, Zixuan;Yuan, Weiming research published 《 Electron Donor-Acceptor Complex Enabled Photocyanation of Tertiary Amines with a Stable and User-Friendly Cyanobenziodoxolone Reagent》, the research content is summarized as follows. A visible light-induced photocyanation of tertiary amines e.g., 1-((trimethylsilyl)methyl)piperidine by a stable, less-toxic and user-friendly CN reagent cyanobenziodoxolone (CBX) was developed. This cyanation process does not require any photocatalyst, oxidant, base or additives, and represents a set of extremely mild and succinct reaction conditions and a broad substrate scope. In addition to the frequently used N-aryl amine derivatives e.g, 2-thiomorpholinoacetonitrile, more challenging tertiary aliphatic amines (modified by a α-silyl substituent) can also be photocyanated smoothly. Mechanistic studies reveal that the cyanation reaction is enabled by an electron donor-acceptor (EDA) complex formed by the interaction between the amine and the cyanobenziodoxolone reagent.

5382-16-1, 4-Hydroxypiperidine is a molecule with a carbonyl group. It is the most active and selective CCR5 receptor antagonist that has been studied to date. 4-Hydroxypiperidine inhibits HIV infection by preventing the binding of HIV to its receptor on the surface of white blood cells, thereby preventing it from entering these cells. 4-Hydroxypiperidine also acts as an anti-inflammatory agent in chronic bronchitis patients, due to its ability to inhibit prostaglandin synthesis. The chemical ionization mass spectra of this molecule show peaks for methyl ethyl, malic acid, and hydroxyl groups. These properties make 4-hydroxypiperidine a useful candidate for drug development against inflammatory diseases and several cancers.
The molecular structure, vibrational spectra, NBO and UV-spectral analysis of 4-Hydroxypiperidine have been studied. The compounds with a substituted 4-piperidinol core have been found to be potent antagonists of the human H receptor., Formula: C5H11NO

Referemce:
Piperidine – Wikipedia,
Piperidine | C5H11N – PubChem