Product Details of 177-11-7. Zeng, L; Li, HR; Hu, JC; Zhang, DC; Hu, JY; Peng, P; Wang, SC; Shi, RY; Peng, JQ; Pao, CW; Chen, EL; Lee, JF; Zhang, H; Chen, YH; Lei, AW in [Zeng, Li; Li, Haoran; Hu, Jingcheng; Zhang, Dongchao; Hu, Jiayu; Peng, Pan; Wang, Shenchun; Shi, Renyi; Peng, Jiaqi; Zhang, Heng; Chen, Yi-Hung; Lei, Aiwen] Wuhan Univ, Coll Chem & Mol Sci, IAS, Wuhan, Peoples R China; [Pao, Chih-Wen; Chen, Jeng-Lung; Lee, Jyh-Fu] Natl Synchrotron Radiat Res Ctr, Hsinchu, Taiwan published Electrochemical oxidative aminocarbonylation of terminal alkynes in 2020, Cited 44. The Name is 1,4-Dioxa-8-azaspiro[4.5]decane. Through research, I have a further understanding and discovery of 177-11-7.
Oxidative carbonylation using CO/O-2 is an attractive strategy to construct carbonyl compounds, but the explosive limit of the gas mixture hampers its application. Now, this safety issue is overcome in the aminocarbonylation of alkynes by replacing the external oxidant O-2 by electrochemistry facilitating a mild and safe reaction. Palladium-catalysed oxidative carbonylation using oxygen as the oxidant is an economical approach; however, the gas mixture of CO and air has an explosive limit of 12.5-74.0% that could hamper extensive application of this process. Herein we report an electrochemical aminocarbonylation of alkynes under atmospheric pressure in an undivided cell without an external oxidant. The transformation has a broad substrate scope (83 examples) that involves primary amines and ammonium salts. Furthermore, mechanistic studies through cyclic voltammetry, in situ infrared and quick-scanning X-ray absorption fine structure spectroscopy reveal the reasons for this protocol proceeding smoothly under electrochemical conditions.
Product Details of 177-11-7. Bye, fridends, I hope you can learn more about C7H13NO2, If you have any questions, you can browse other blog as well. See you lster.
Reference:
Piperidine – Wikipedia,
Piperidine | C5H7510N – PubChem