Some scientific research about 177-11-7

Product Details of 177-11-7. About 1,4-Dioxa-8-azaspiro[4.5]decane, If you have any questions, you can contact Li, XJ; Payne, DT; Ampolu, B; Bland, N; Brown, JT; Dutton, MJ; Fitton, CA; Gulliver, A; Hale, L; Hamza, D; Jones, G; Lane, R; Leach, AG; Male, L; Merisor, EG; Morton, MJ; Quy, AS; Roberts, R; Scarll, R; Schulz-Utermoehl, T; Stankovic, T; Stevenson, B; Fossey, JS; Agathanggelou, A or concate me.

In 2019 MEDCHEMCOMM published article about NF-KAPPA-B; WATER-SOLUBLE PARTHENOLIDE; SESQUITERPENE LACTONE; IN-VITRO; AMINO-DERIVATIVES; BIOLOGICAL EVALUATION; ANTICANCER AGENTS; CRYSTAL-STRUCTURE; CANCER CELLS; FEVERFEW in [Li, Xingjian; Payne, Daniel T.; Dutton, Mark J.; Quy, Alex S.; Fossey, John S.] Univ Birmingham, Sch Chem, Birmingham B15 2TT, W Midlands, England; [Ampolu, Badarinath; Bland, Nicholas; Brown, Jane T.; Hamza, Daniel; Jones, Geraint; Lane, Rebecca; Merisor, Elena G.; Schulz-Utermoehl, Timothy; Stevenson, Brett] BioCity, Sygnat Discovery, Discovery Bldg,Pennyfoot St, Nottingham NG1 1GR, England; [Fitton, Catherine A.; Scarll, Rosanna; Stankovic, Tatjana; Agathanggelou, Angelo] Univ Birmingham, Inst Canc & Genom Sci, Birmingham B15 2TT, W Midlands, England; [Gulliver, Abigail; Hale, Lee] Univ Birmingham, Winterbourne Bot Garden, 58 Edgbaston Pk Rd, Birmingham B15 2RT, W Midlands, England; [Leach, Andrew G.] Liverpool John Moores Univ, Sch Pharm & Biomol Sci, Byrom St, Liverpool L3 3AF, Merseyside, England; [Male, Louise] Univ Birmingham, Sch Chem, Xray Crystallog Facil, Birmingham B15 2TT, W Midlands, England; [Morton, Michael J.; Roberts, Ruth] ApconiX Ltd, Alderly Pk, Nether Alderly SK10 4TG, Cheshire, England; [Roberts, Ruth] Univ Birmingham, Sch Biosci, Birmingham B15 2TT, W Midlands, England in 2019, Cited 143. The Name is 1,4-Dioxa-8-azaspiro[4.5]decane. Through research, I have a further understanding and discovery of 177-11-7. Product Details of 177-11-7

Parthenolide is a natural product that exhibits anti-leukaemic activity, however, its clinical use is limited by its poor bioavailability. It may be extracted from feverfew and protocols for growing, extracting and derivatising it are reported. A novel parthenolide derivative with good bioavailability and pharmacological properties was identified through a screening cascade based on in vitro anti-leukaemic activity and calculated drug-likeness properties, in vitro and in vivo pharmacokinetics studies and hERG liability testing. In vitro studies showed the most promising derivative to have comparable anti-leukaemic activity to DMAPT, a previously described parthenolide derivative. The newly identified compound was shown to have pro-oxidant activity and in silico molecular docking studies indicate a prodrug mode of action. A synthesis scheme is presented for the production of amine 7 used in the generation of 5f.

Product Details of 177-11-7. About 1,4-Dioxa-8-azaspiro[4.5]decane, If you have any questions, you can contact Li, XJ; Payne, DT; Ampolu, B; Bland, N; Brown, JT; Dutton, MJ; Fitton, CA; Gulliver, A; Hale, L; Hamza, D; Jones, G; Lane, R; Leach, AG; Male, L; Merisor, EG; Morton, MJ; Quy, AS; Roberts, R; Scarll, R; Schulz-Utermoehl, T; Stankovic, T; Stevenson, B; Fossey, JS; Agathanggelou, A or concate me.

Reference:
Piperidine – Wikipedia,
Piperidine | C5H7510N – PubChem

 

Interesting scientific research on 177-11-7

Safety of 1,4-Dioxa-8-azaspiro[4.5]decane. About 1,4-Dioxa-8-azaspiro[4.5]decane, If you have any questions, you can contact Hu, R; Chen, FJ; Zhang, XF; Zhang, M; Su, WP or concate me.

In 2019 NAT COMMUN published article about C-H BONDS; ALPHA,BETA-UNSATURATED CARBONYL-COMPOUNDS; DIRECT BETA-ARYLATION; INTRAMOLECULAR AMINATION; AEROBIC DEHYDROGENATION; C(SP(3))-H BONDS; GAMMA-AMINATION; ARYL KETONES; PALLADIUM; FUNCTIONALIZATION in [Hu, Rong; Su, Weiping] ShanghaiTech Univ, Sch Phys Sci & Technol, Shanghai 201210, Peoples R China; [Hu, Rong; Chen, Fa-Jie; Zhang, Xiaofeng; Zhang, Min; Su, Weiping] Chinese Acad Sci, Ctr Excellence Mol Synth, Fujian Inst Res Struct Matter, State Key Lab Struct Chem, Fuzhou 350002, Fujian, Peoples R China in 2019, Cited 70. The Name is 1,4-Dioxa-8-azaspiro[4.5]decane. Through research, I have a further understanding and discovery of 177-11-7. Safety of 1,4-Dioxa-8-azaspiro[4.5]decane

Metal-catalyzed beta-C-H functionalization of saturated carbonyls via dehydrogenative desaturation proved to be a powerful tool for simplifying synthesis of valuable beta-substituted carbonyls. Here, we report a copper-catalyzed dehydrogenative gamma-C(sp(3))-H amination of saturated ketones that initiates the three-component coupling of saturated ketones, amines and N-substituted maleimides to construct polysubstituted anilines. The protocol presented herein enables both linear and alpha-branched butanones to couple a wide spectrum of amines and various N-substituted maleimides to produce diverse tetra- or penta-substituted anilines in fair-to-excellent yields with good functional group tolerance. The mechanism studies support that this ketone dehydrogenative gamma-C(sp(3))-H amination was triggered by the ketone alpha,beta-dehydrogenation desaturation that activates the adjacent gamma-C(sp(3))-H bond towards functionalization. This alpha,beta-dehydrogenation desaturation-triggered cascade sequence opens up a new avenue to the remote C(sp(3))-H functionalization of saturated ketones and has the potential to enable the rapid syntheses of complex compounds from simple starting materials.

Safety of 1,4-Dioxa-8-azaspiro[4.5]decane. About 1,4-Dioxa-8-azaspiro[4.5]decane, If you have any questions, you can contact Hu, R; Chen, FJ; Zhang, XF; Zhang, M; Su, WP or concate me.

Reference:
Piperidine – Wikipedia,
Piperidine | C5H7510N – PubChem

 

Some scientific research about 1,4-Dioxa-8-azaspiro[4.5]decane

Recommanded Product: 177-11-7. About 1,4-Dioxa-8-azaspiro[4.5]decane, If you have any questions, you can contact Zhao, JP; Ding, LJ; Wang, PC; Liu, Y; Huang, MJ; Zhou, XL; Lu, M or concate me.

I found the field of Chemistry very interesting. Saw the article Electrochemical Nonacidic N-Nitrosation/N-Nitration of Secondary Amines through a Biradical Coupling Reaction published in 2020. Recommanded Product: 177-11-7, Reprint Addresses Wang, PC; Lu, M (corresponding author), Nanjing Univ Sci & Technol, Sch Chem Engn, Nanjing 210094, Jiangsu, Peoples R China.. The CAS is 177-11-7. Through research, I have a further understanding and discovery of 1,4-Dioxa-8-azaspiro[4.5]decane

An acid-free N-nitrosation/nitration of the N-H bonds in secondary amines with Fe(NO3)(3)center dot 9H(2)O as the nitroso/nitro source through an electrocatalyzed radical coupling reaction was developed. Cyclic aliphatic amines and N-heteroaromatic compounds were N-nitrosated and N-nitrated, respectively, under mild conditions. Control and competition experiments, as well as kinetic studies, demonstrate that N-nitrosation and N-nitration involve two different radical reaction pathways involving N+ and N-center dot radicals. Moreover, the electrocatalysis method enables the preferential activation of the N-H bond over the electrode and thus provides high selectivity for specific N atoms. Finally, this strategy exhibits a broad scope and provides a green and straightforward approach to generate useful N-nitroso/nitro compounds in good yields.

Recommanded Product: 177-11-7. About 1,4-Dioxa-8-azaspiro[4.5]decane, If you have any questions, you can contact Zhao, JP; Ding, LJ; Wang, PC; Liu, Y; Huang, MJ; Zhou, XL; Lu, M or concate me.

Reference:
Piperidine – Wikipedia,
Piperidine | C5H7510N – PubChem

 

New learning discoveries about 1,4-Dioxa-8-azaspiro[4.5]decane

Safety of 1,4-Dioxa-8-azaspiro[4.5]decane. About 1,4-Dioxa-8-azaspiro[4.5]decane, If you have any questions, you can contact Binici, A; Okumus, A; Elmas, G; Kilic, Z; Ramazanoglu, N; Acik, L; Simsek, H; Tunali, BC; Turk, M; Guzel, R; Hokelek, T or concate me.

In 2019 NEW J CHEM published article about DNA INTERACTIONS; STEREOGENIC PROPERTIES; STRUCTURAL CHARACTERIZATIONS; ANTIMICROBIAL ACTIVITIES; ELECTROCHEMICAL INVESTIGATIONS; CYCLOTRIPHOSPHAZENE CORE; CHIRAL CONFIGURATIONS; DENDRIMERS; CYCLOPHOSPHAZENES; CHEMISTRY in [Binici, Arzu] Turkeys Hlth Minist, Gen Directorate Publ Hlth, TR-06100 Ankara, Turkey; [Okumus, Aytug; Elmas, Gamze; Kilic, Zeynel] Ankara Univ, Dept Chem, TR-06100 Tandogan, Turkey; [Ramazanoglu, Nagehan; Acik, Leyla] Gazi Univ, Dept Biol, TR-06500 Ankara, Turkey; [Simsek, Hulya] Bozok Univ, Fac Med, TR-66900 Yozgat, Turkey; [Tunali, Beste Cagdas; Turk, Mustafa] Kirikkale Univ, Dept Bioengn, TR-71450 Kirikkale, Turkey; [Guzel, Remziye] Dicle Univ, Dept Chem, TR-21280 Diyarbakir, Turkey; [Hokelek, Tuncer] Hacettepe Univ, Dept Phys, TR-06800 Ankara, Turkey in 2019, Cited 67. The Name is 1,4-Dioxa-8-azaspiro[4.5]decane. Through research, I have a further understanding and discovery of 177-11-7. Safety of 1,4-Dioxa-8-azaspiro[4.5]decane

The reaction of N4P4Cl8 (1) with one equimolar amount of the sodium salt of an N/O donor-type bidentate ligand (2) afforded two kinds of derivatives, namely, mono-ferrocenyl-2-cis-4-dichloro-ansa- (2,4-ansa; 3) and mono-ferrocenyl-spiro- (spiro; 4) hexachlorocyclotetraphosphazenes. The reaction yield (35%) of 4 was significantly larger than that of 3 (14%). The 2,4-ansa compound (3) was reacted with excess secondary amines to produce 2-cis-4-dichloro-ansa-cyclotetraphosphazenes (3a-3d). On the other hand, the spiro compound (4) gave fully substituted mono-ferrocenyl-spiro-cyclotetraphosphazenes (4a-4d) with excess monoamines as well. The tetrameric phosphazene derivatives were characterized by ESI-MS and/or HRMS, FTIR, HSQC, HMBC, H-1, C-13, and P-31 NMR spectroscopy and X-ray crystallography (for 4). It is observed that the 2,4-ansa and spiro-cyclotetraphosphazenes have different thermal stabilities. Additionally, the CVs of the new mono-ferrocenyl pendant-armed cyclotetraphosphazenes revealed electrochemically reversible one-electron oxidation of the Fe-redox centre. The 2,4-ansa phosphazenes (3 and 3a-3d) have two different stereogenic P centers indicating that they are expected to be in racemic mixtures (RR’/SS’). The chiralities of 3a and 3c were investigated by chiral HPLC. The manuscript also deals with the antimicrobial activities against G(+)/G(-) bacteria and fungi, the interactions with plasmid DNA, the in vitro cytotoxic activities against L929 fibroblast and MCF7 breast cells, and the antituberculosis activities against Mycobacterium tuberculosis H37Rv of the cyclotetraphosphazenes.

Safety of 1,4-Dioxa-8-azaspiro[4.5]decane. About 1,4-Dioxa-8-azaspiro[4.5]decane, If you have any questions, you can contact Binici, A; Okumus, A; Elmas, G; Kilic, Z; Ramazanoglu, N; Acik, L; Simsek, H; Tunali, BC; Turk, M; Guzel, R; Hokelek, T or concate me.

Reference:
Piperidine – Wikipedia,
Piperidine | C5H7510N – PubChem

 

Extended knowledge of 1,4-Dioxa-8-azaspiro[4.5]decane

About 1,4-Dioxa-8-azaspiro[4.5]decane, If you have any questions, you can contact West, MS; Mills, LR; McDonald, TR; Lee, JB; Ensan, D; Rousseaux, SAL or concate me.. Computed Properties of C7H13NO2

West, MS; Mills, LR; McDonald, TR; Lee, JB; Ensan, D; Rousseaux, SAL in [West, Michael S.; Mills, L. Reginald; McDonald, Tyler R.; Lee, Jessica B.; Ensan, Deeba; Rousseaux, Sophie A. L.] Univ Toronto, Dept Chem, Davenport Res Labs, 80 St George St, Toronto, ON M5S 3H6, Canada; [Lee, Jessica B.] Paraza Pharma Inc, 275 Blvd Armand Frappier, Laval, PQ H7V 4A7, Canada; [Ensan, Deeba] Ontario Inst Canc Res, 661 Univ Ave Suite 510, Toronto, ON M5G 0A3, Canada published Synthesis of trans-2-Substituted Cyclopropylamines from alpha-Chloroaldehydes in 2019, Cited 48. Computed Properties of C7H13NO2. The Name is 1,4-Dioxa-8-azaspiro[4.5]decane. Through research, I have a further understanding and discovery of 177-11-7.

Cyclopropylamines are prevalent in pharmaceuticals and agrochemicals. Herein, we report the synthesis of trans-2-substituted cyclopropylamines in high diastereoselectivity from readily available alpha-chloroaldehydes. The reaction proceeds via trapping of an electrophilic zinc homoenolate with an amine followed by ring closure to generate the cyclopropylamine. We have also observed that cyclopropylamine cis/trans-isomerization occurs in the presence of zinc halide salts and that this process can be turned off by the addition of a polar aprotic cosolvent.

About 1,4-Dioxa-8-azaspiro[4.5]decane, If you have any questions, you can contact West, MS; Mills, LR; McDonald, TR; Lee, JB; Ensan, D; Rousseaux, SAL or concate me.. Computed Properties of C7H13NO2

Reference:
Piperidine – Wikipedia,
Piperidine | C5H7510N – PubChem

 

Some scientific research about 177-11-7

About 1,4-Dioxa-8-azaspiro[4.5]decane, If you have any questions, you can contact Baska, F; Sipos, A; Orfi, Z; Nemes, Z; Dobos, J; Szantai-Kis, C; Szabo, E; Szenasi, G; Dezsi, L; Hamar, P; Cserepes, MT; Tovari, J; Garamvolgyi, R; Kreko, M; Orfi, L or concate me.. Category: piperidines

Recently I am researching about ACUTE MYELOID-LEUKEMIA; RISK MYELODYSPLASTIC SYNDROME; ACUTE MYELOGENOUS LEUKEMIA; TYROSINE KINASE; ACTIVATING MUTATION; TANDEM DUPLICATION; WILD-TYPE; IN-VITRO; PHASE-I; RECEPTOR, Saw an article supported by the National Research Development and Innovation Office, Hungary [K116295, KFL16-1-2017-0439]. Category: piperidines. Published in ELSEVIER FRANCE-EDITIONS SCIENTIFIQUES MEDICALES ELSEVIER in ISSY-LES-MOULINEAUX ,Authors: Baska, F; Sipos, A; Orfi, Z; Nemes, Z; Dobos, J; Szantai-Kis, C; Szabo, E; Szenasi, G; Dezsi, L; Hamar, P; Cserepes, MT; Tovari, J; Garamvolgyi, R; Kreko, M; Orfi, L. The CAS is 177-11-7. Through research, I have a further understanding and discovery of 1,4-Dioxa-8-azaspiro[4.5]decane

Aberrant activation of FMS-like tyrosine receptor kinase 3 (FLT3) is implicated in the pathogenesis of acute myeloid leukemia (AML) in 20-30% of patients. In this study we identified a highly selective (phenylethenyl)quinazoline compound family as novel potent inhibitors of the FLT3-ITD and FLT3-D835Y kinases. Their prominent effects were confirmed by biochemical and cellular proliferation assays followed by mice xenograft studies. Our modelling experiments and the chemical structures of the compounds predict the possibility of covalent inhibition. The most effective compounds triggered apoptosis in FLT3-ITD AML cells but had either weak or no effect in FLT3-independent leukemic and non-leukemic cell lines. Our results strongly suggest that our compounds may become therapeutics in relapsing and refractory AML disease harboring various ITD and tyrosine kinase domain mutations, by their ability to overcome drug resistance. (C) 2019 Elsevier Masson SAS. All rights reserved.

About 1,4-Dioxa-8-azaspiro[4.5]decane, If you have any questions, you can contact Baska, F; Sipos, A; Orfi, Z; Nemes, Z; Dobos, J; Szantai-Kis, C; Szabo, E; Szenasi, G; Dezsi, L; Hamar, P; Cserepes, MT; Tovari, J; Garamvolgyi, R; Kreko, M; Orfi, L or concate me.. Category: piperidines

Reference:
Piperidine – Wikipedia,
Piperidine | C5H7510N – PubChem

 

A new application about1,4-Dioxa-8-azaspiro[4.5]decane

About 1,4-Dioxa-8-azaspiro[4.5]decane, If you have any questions, you can contact Hu, R; Chen, FJ; Zhang, XF; Zhang, M; Su, WP or concate me.. Formula: C7H13NO2

Authors Hu, R; Chen, FJ; Zhang, XF; Zhang, M; Su, WP in NATURE PUBLISHING GROUP published article about C-H BONDS; ALPHA,BETA-UNSATURATED CARBONYL-COMPOUNDS; DIRECT BETA-ARYLATION; INTRAMOLECULAR AMINATION; AEROBIC DEHYDROGENATION; C(SP(3))-H BONDS; GAMMA-AMINATION; ARYL KETONES; PALLADIUM; FUNCTIONALIZATION in [Hu, Rong; Su, Weiping] ShanghaiTech Univ, Sch Phys Sci & Technol, Shanghai 201210, Peoples R China; [Hu, Rong; Chen, Fa-Jie; Zhang, Xiaofeng; Zhang, Min; Su, Weiping] Chinese Acad Sci, Ctr Excellence Mol Synth, Fujian Inst Res Struct Matter, State Key Lab Struct Chem, Fuzhou 350002, Fujian, Peoples R China in 2019, Cited 70. Formula: C7H13NO2. The Name is 1,4-Dioxa-8-azaspiro[4.5]decane. Through research, I have a further understanding and discovery of 177-11-7

Metal-catalyzed beta-C-H functionalization of saturated carbonyls via dehydrogenative desaturation proved to be a powerful tool for simplifying synthesis of valuable beta-substituted carbonyls. Here, we report a copper-catalyzed dehydrogenative gamma-C(sp(3))-H amination of saturated ketones that initiates the three-component coupling of saturated ketones, amines and N-substituted maleimides to construct polysubstituted anilines. The protocol presented herein enables both linear and alpha-branched butanones to couple a wide spectrum of amines and various N-substituted maleimides to produce diverse tetra- or penta-substituted anilines in fair-to-excellent yields with good functional group tolerance. The mechanism studies support that this ketone dehydrogenative gamma-C(sp(3))-H amination was triggered by the ketone alpha,beta-dehydrogenation desaturation that activates the adjacent gamma-C(sp(3))-H bond towards functionalization. This alpha,beta-dehydrogenation desaturation-triggered cascade sequence opens up a new avenue to the remote C(sp(3))-H functionalization of saturated ketones and has the potential to enable the rapid syntheses of complex compounds from simple starting materials.

About 1,4-Dioxa-8-azaspiro[4.5]decane, If you have any questions, you can contact Hu, R; Chen, FJ; Zhang, XF; Zhang, M; Su, WP or concate me.. Formula: C7H13NO2

Reference:
Piperidine – Wikipedia,
Piperidine | C5H7510N – PubChem

 

The Shocking Revelation of C7H13NO2

Computed Properties of C7H13NO2. About 1,4-Dioxa-8-azaspiro[4.5]decane, If you have any questions, you can contact Wu, J; Zheng, CM; Li, BY; Hawkins, JM; Scott, SL or concate me.

Computed Properties of C7H13NO2. Authors Wu, J; Zheng, CM; Li, BY; Hawkins, JM; Scott, SL in ROYAL SOC CHEMISTRY published article about in [Wu, Jing; Zheng, Chunming; Scott, Susannah L.] Univ Calif Santa Barbara, Dept Chem Engn, Santa Barbara, CA 93106 USA; [Li, Bryan] Pfizer Global Res & Dev, Chem R&D La Jolla Lab, San Diego, CA 92121 USA; [Hawkins, Joel M.] Pfizer Global Res & Dev, Groton, CT 06371 USA; [Scott, Susannah L.] Univ Calif Santa Barbara, Dept Chem & Biochem, Santa Barbara, CA 93106 USA in 2021, Cited 64. The Name is 1,4-Dioxa-8-azaspiro[4.5]decane. Through research, I have a further understanding and discovery of 177-11-7

N-Boc deprotection (deBoc) is a common reaction in pharmaceutical research and development, as well as pharma manufacturing. Use of a catalyst lowers the required reaction temperature, and heterogeneous catalysts allow the reaction to be conducted in a continuous flow reactor with a low-boiling solvent, facilitating product separation and enhancing efficiency and productivity relative to a batch process. In this study, we explore the use of simple solid Bronsted acid catalysts to achieve continuous N-Boc deprotection of amines, without additional workup steps. Using THF as the solvent, H-BEA zeolite affords high yields of a variety of aromatic and aliphatic amines, often in residence times of less than a minute at 140 degrees C. The same catalyst/solvent combination is ineffective in batch conditions, due to the much lower temperature of refluxing THF. Boc-protected p-chloroaniline was deprotected with a throughput of 18 mmol p-chloroaniline per h per g(cat), sustained over 9 h. The active sites of the zeolite do not appear to be directly associated with the Al framework substitution in the micropores, since partially ion-exchanged Na/H-BEA shows activity similar to H-BEA. The strong Bronsted acid sites (framework [Si(OH)Al]), are likely poisoned by the amine product. Moderate Bronsted acid sites associated with silanol defects near Al on or near the external surface (and not susceptible to Na+-exchange) are presumably the active sites, since they are not poisoned even by more basic aliphatic amines.

Computed Properties of C7H13NO2. About 1,4-Dioxa-8-azaspiro[4.5]decane, If you have any questions, you can contact Wu, J; Zheng, CM; Li, BY; Hawkins, JM; Scott, SL or concate me.

Reference:
Piperidine – Wikipedia,
Piperidine | C5H7510N – PubChem

 

Brief introduction of 1,4-Dioxa-8-azaspiro[4.5]decane

Quality Control of 1,4-Dioxa-8-azaspiro[4.5]decane. About 1,4-Dioxa-8-azaspiro[4.5]decane, If you have any questions, you can contact An, Y; Zhang, BS; Zhang, Z; Liu, C; Gou, XY; Ding, YN; Liang, YM or concate me.

Recently I am researching about INTRAMOLECULAR ALKANE ARYLATION; C-H FUNCTIONALIZATION; PHENANTHRIDINE DERIVATIVES; OXIDATIVE CYCLIZATION; ARYL IODIDES; METAL-FREE; BOND; CONSTITUENTS; ALKALOIDS; AMINATION, Saw an article supported by the National Natural Science Foundation of ChinaNational Natural Science Foundation of China (NSFC) [NSF 21472073, 21772075, 21532001]. Quality Control of 1,4-Dioxa-8-azaspiro[4.5]decane. Published in ROYAL SOC CHEMISTRY in CAMBRIDGE ,Authors: An, Y; Zhang, BS; Zhang, Z; Liu, C; Gou, XY; Ding, YN; Liang, YM. The CAS is 177-11-7. Through research, I have a further understanding and discovery of 1,4-Dioxa-8-azaspiro[4.5]decane

This report describes a carboxylate-assisted palladium-catalysed Catellani reaction, which is compatible with ortho-amination and unactivated C(sp(2))-H arylation. This method was used to synthesize a series of 1-amino substituted dihydrophenanthridines, phenanthridines and 6H-benzo[c]chromenes. Based on kinetic isotope experiments, the kinetic curve proves that pivalic acid accelerates the reaction rate of unactivated C(sp(2))-H activation, and thus this rate can keep up with the five membered aryl-norbornene-palladacycle (ANP) intermediate.

Quality Control of 1,4-Dioxa-8-azaspiro[4.5]decane. About 1,4-Dioxa-8-azaspiro[4.5]decane, If you have any questions, you can contact An, Y; Zhang, BS; Zhang, Z; Liu, C; Gou, XY; Ding, YN; Liang, YM or concate me.

Reference:
Piperidine – Wikipedia,
Piperidine | C5H7510N – PubChem

 

Something interesting about 1,4-Dioxa-8-azaspiro[4.5]decane

About 1,4-Dioxa-8-azaspiro[4.5]decane, If you have any questions, you can contact Zhao, JP; Ding, LJ; Wang, PC; Liu, Y; Huang, MJ; Zhou, XL; Lu, M or concate me.. COA of Formula: C7H13NO2

I found the field of Chemistry very interesting. Saw the article Electrochemical Nonacidic N-Nitrosation/N-Nitration of Secondary Amines through a Biradical Coupling Reaction published in 2020. COA of Formula: C7H13NO2, Reprint Addresses Wang, PC; Lu, M (corresponding author), Nanjing Univ Sci & Technol, Sch Chem Engn, Nanjing 210094, Jiangsu, Peoples R China.. The CAS is 177-11-7. Through research, I have a further understanding and discovery of 1,4-Dioxa-8-azaspiro[4.5]decane

An acid-free N-nitrosation/nitration of the N-H bonds in secondary amines with Fe(NO3)(3)center dot 9H(2)O as the nitroso/nitro source through an electrocatalyzed radical coupling reaction was developed. Cyclic aliphatic amines and N-heteroaromatic compounds were N-nitrosated and N-nitrated, respectively, under mild conditions. Control and competition experiments, as well as kinetic studies, demonstrate that N-nitrosation and N-nitration involve two different radical reaction pathways involving N+ and N-center dot radicals. Moreover, the electrocatalysis method enables the preferential activation of the N-H bond over the electrode and thus provides high selectivity for specific N atoms. Finally, this strategy exhibits a broad scope and provides a green and straightforward approach to generate useful N-nitroso/nitro compounds in good yields.

About 1,4-Dioxa-8-azaspiro[4.5]decane, If you have any questions, you can contact Zhao, JP; Ding, LJ; Wang, PC; Liu, Y; Huang, MJ; Zhou, XL; Lu, M or concate me.. COA of Formula: C7H13NO2

Reference:
Piperidine – Wikipedia,
Piperidine | C5H7510N – PubChem