Machine Learning in Chemistry about 177-11-7

COA of Formula: C7H13NO2. About 1,4-Dioxa-8-azaspiro[4.5]decane, If you have any questions, you can contact Kuzey, NG; Ozgur, M; Cemaloglu, R; Asmafiliz, N; Kilic, Z; Acik, L; Aydin, B; Hokelek, T or concate me.

An article Mono- and dispirocyclotriphosphazenes containing 4-bromobenzyl pendant arm(s): Synthesis, spectroscopy, crystallography and biological activity studies WOS:000573639200004 published article about PHOSPHORUS-NITROGEN COMPOUNDS; DNA INTERACTIONS; STRUCTURAL INVESTIGATIONS; CYTOTOXIC ACTIVITIES; PHOSPHAZENES; DERIVATIVES; SPIRO in [Kuzey, Nur Guven; Ozgur, Mehtap; Cemaloglu, Resit; Asmafiliz, Nuran; Kilic, Zeynel] Ankara Univ, Dept Chem, TR-06100 Ankara, Turkey; [Acik, Leyla; Aydin, Betul] Gazi Univ, Dept Biol, TR-06500 Ankara, Turkey; [Hokelek, Tuncer] Hacettepe Univ, Dept Phys, TR-06800 Ankara, Turkey in 2020, Cited 40. The Name is 1,4-Dioxa-8-azaspiro[4.5]decane. Through research, I have a further understanding and discovery of 177-11-7. COA of Formula: C7H13NO2

The N/N donor-type bromobenzyldiamines (1-3) were successively prepared by reduction of Schiff bases formed as a result of condensation reactions of 4-bromobenzaldehyde with aliphatic diamines. The Cl exchange reactions of hexachlorocyclotriphosphazene (HCCP; trimer; N3P3Cl6; 4) with the bidentate ligands (1-3) produced the new monospiro- (5-7) and dispirocyclotriphosphazenes (8-13) containing 4-bromo-benzyl pendant arm(s). The tetrachloro phosphazenes (5-7) were reacted with pyrrolidine, tetra-1,4-dioxa-8-azaspiro [4.5]decane (DASD) and piperidine to give the tetraamino substituted mono-spirophosphazenes (5a-7c). The spectral analyses of all the phosphazenes were made using appropriate spectroscopic methods; such as FTIR, H-1, C-13, P-31 NMR and ESI-MS. The molecular and crystal structures of 5, 6, 7 and 12 were also determined by X-ray crystallography. On the other hand, the antimicrobial activities of the phosphazenes were evaluated against G (-) and G (+) bacteria and fungi. Some of the tetraaminophosphazenes were found to be very active against several bacteria and fungi. Besides, the interactions of the cyclotriphosphazenes with plasmid DNA were investigated using agarose gel electrophoresis. (C) 2020 Elsevier B.V. All rights reserved.

COA of Formula: C7H13NO2. About 1,4-Dioxa-8-azaspiro[4.5]decane, If you have any questions, you can contact Kuzey, NG; Ozgur, M; Cemaloglu, R; Asmafiliz, N; Kilic, Z; Acik, L; Aydin, B; Hokelek, T or concate me.

Reference:
Piperidine – Wikipedia,
Piperidine | C5H7510N – PubChem

 

Our Top Choice Compound:1,4-Dioxa-8-azaspiro[4.5]decane

Application In Synthesis of 1,4-Dioxa-8-azaspiro[4.5]decane. About 1,4-Dioxa-8-azaspiro[4.5]decane, If you have any questions, you can contact Zhang, Z; Zhang, BS; Li, KL; An, Y; Liu, C; Gou, XY; Liang, YM or concate me.

I found the field of Chemistry very interesting. Saw the article Palladium-Catalyzed Amination/Dearomatization Reaction of Indoles and Benzofurans published in 2020. Application In Synthesis of 1,4-Dioxa-8-azaspiro[4.5]decane, Reprint Addresses Liang, YM (corresponding author), Lanzhou Univ, State Key Lab Appl Organ Chem, Lanzhou 730000, Peoples R China.. The CAS is 177-11-7. Through research, I have a further understanding and discovery of 1,4-Dioxa-8-azaspiro[4.5]decane

This report describes a palladium-catalyzed dearomatization and amination tandem reaction of 2,3-disubstituted indoles and benzofurans via the Catellani strategy. This reaction provides a new method for the construction of amino-substituted indoline-fused cyclic and benzofuran spiro compounds in good yields. The reaction has broad functional group compatibility and substrate scope.

Application In Synthesis of 1,4-Dioxa-8-azaspiro[4.5]decane. About 1,4-Dioxa-8-azaspiro[4.5]decane, If you have any questions, you can contact Zhang, Z; Zhang, BS; Li, KL; An, Y; Liu, C; Gou, XY; Liang, YM or concate me.

Reference:
Piperidine – Wikipedia,
Piperidine | C5H7510N – PubChem

 

Top Picks: new discover of C7H13NO2

Recommanded Product: 177-11-7. About 1,4-Dioxa-8-azaspiro[4.5]decane, If you have any questions, you can contact An, Y; Zhang, BS; Zhang, Z; Liu, C; Gou, XY; Ding, YN; Liang, YM or concate me.

In 2020 CHEM COMMUN published article about INTRAMOLECULAR ALKANE ARYLATION; C-H FUNCTIONALIZATION; PHENANTHRIDINE DERIVATIVES; OXIDATIVE CYCLIZATION; ARYL IODIDES; METAL-FREE; BOND; CONSTITUENTS; ALKALOIDS; AMINATION in [An, Yang; Zhang, Bo-Sheng; Zhang, Zhe; Liu, Ce; Gou, Xue-Ya; Ding, Ya-Nan; Liang, Yong-Min] Lanzhou Univ, State Key Lab Appl Organ Chem, Lanzhou 730000, Peoples R China in 2020, Cited 69. The Name is 1,4-Dioxa-8-azaspiro[4.5]decane. Through research, I have a further understanding and discovery of 177-11-7. Recommanded Product: 177-11-7

This report describes a carboxylate-assisted palladium-catalysed Catellani reaction, which is compatible with ortho-amination and unactivated C(sp(2))-H arylation. This method was used to synthesize a series of 1-amino substituted dihydrophenanthridines, phenanthridines and 6H-benzo[c]chromenes. Based on kinetic isotope experiments, the kinetic curve proves that pivalic acid accelerates the reaction rate of unactivated C(sp(2))-H activation, and thus this rate can keep up with the five membered aryl-norbornene-palladacycle (ANP) intermediate.

Recommanded Product: 177-11-7. About 1,4-Dioxa-8-azaspiro[4.5]decane, If you have any questions, you can contact An, Y; Zhang, BS; Zhang, Z; Liu, C; Gou, XY; Ding, YN; Liang, YM or concate me.

Reference:
Piperidine – Wikipedia,
Piperidine | C5H7510N – PubChem

 

What about chemistry interests you the most 177-11-7

About 1,4-Dioxa-8-azaspiro[4.5]decane, If you have any questions, you can contact Lei, N; Shen, YL; Li, YJ; Tao, P; Yang, LQ; Su, ZS; Zheng, K or concate me.. Product Details of 177-11-7

Product Details of 177-11-7. In 2020 ORG LETT published article about C-H FUNCTIONALIZATION; PHOTOCATALYTIC OXIDATION; REGIOSELECTIVE AMINATION; IMIDYL RADICALS; IODINE; ELECTROSYNTHESIS; GENERATION; AMIDATION; CHEMISTRY; ARENES in [Lei, Ning; Shen, Yanling; Li, Yujun; Tao, Pan; Yang, Liquan; Su, Zhishan; Zheng, Ke] Sichuan Univ, Coll Chem, Key Lab Green Chem & Technol, Minist Educ, Chengdu 610064, Peoples R China in 2020, Cited 72. The Name is 1,4-Dioxa-8-azaspiro[4.5]decane. Through research, I have a further understanding and discovery of 177-11-7.

An environmentally friendly electrochemical approach for iodoamination of various indole derivatives with a series of unactivated amines, amino acid derivatives, and benzotriazoles (more than 80 examples) has been developed. This strategy was further applied in late-stage functionalization of natural products and pharmaceuticals and gram-scale synthesis and radiosynthesis of I-13(1)-labeled compounds. Fundamental insights into the mechanism of the reaction based on control experiments, density functional theory calculation, and cyclic voltammetry are provided.

About 1,4-Dioxa-8-azaspiro[4.5]decane, If you have any questions, you can contact Lei, N; Shen, YL; Li, YJ; Tao, P; Yang, LQ; Su, ZS; Zheng, K or concate me.. Product Details of 177-11-7

Reference:
Piperidine – Wikipedia,
Piperidine | C5H7510N – PubChem

 

The Absolute Best Science Experiment for 1,4-Dioxa-8-azaspiro[4.5]decane

About 1,4-Dioxa-8-azaspiro[4.5]decane, If you have any questions, you can contact Chen, TC; Yu, DS; Chen, SJ; Chen, CL; Lee, CC; Hsieh, YY; Chang, LC; Guh, JH; Lin, JJ; Huang, HS or concate me.. Computed Properties of C7H13NO2

Computed Properties of C7H13NO2. Chen, TC; Yu, DS; Chen, SJ; Chen, CL; Lee, CC; Hsieh, YY; Chang, LC; Guh, JH; Lin, JJ; Huang, HS in [Chen, Tsung-Chih; Chen, Chun-Liang; Lee, Chia-Chung; Huang, Hsu-Shan] Taipei Med Univ, Coll Med Sci & Technol, Grad Inst Canc Biol & Drug Discovery, Taipei 110, Taiwan; [Chen, Tsung-Chih; Yu, Dah-Shyong; Chen, Chun-Liang; Lee, Chia-Chung; Huang, Hsu-Shan] Natl Def Med Ctr, Grad Inst Life Sci, Taipei 114, Taiwan; [Chen, Tsung-Chih; Chen, Shiag-Jiun; Hsieh, Ying-Yu; Huang, Hsu-Shan] Natl Def Med Ctr, Sch Pharm, Taipei 114, Taiwan; [Yu, Dah-Shyong] Triserv Gen Hosp, Dept Surg, Div Urol, Urooncol Lab, Taipei 114, Taiwan; [Yu, Dah-Shyong] Natl Def Med Ctr, Inst Prevent Med, Taipei 114, Taiwan; [Chang, Lien-Cheng; Lin, Jing-Jer] Natl Taiwan Univ, Coll Med, Inst Biochem & Mol Biol, Taipei 100, Taiwan; [Chang, Lien-Cheng] Minist Hlth & Welf, Food & Drug Adm, Taipei 115, Taiwan; [Guh, Jih-Hwa] Natl Taiwan Univ, Sch Pharm, Taipei 100, Taiwan published Design, synthesis and biological evaluation of tetracyclic azafluorenone derivatives with topoisomerase I inhibitory properties as potential anticancer agents in 2019, Cited 40. The Name is 1,4-Dioxa-8-azaspiro[4.5]decane. Through research, I have a further understanding and discovery of 177-11-7.

Several 9-chloro-11H-indeno[1,2-c]quinolin-11-one derivatives have been designed which is replacing side chains with different groups containing oxygen, nitrogen or sulfur atoms. Substitution of C-6 on the starting structure, 6,9-dichloro-11H-indeno[1,2-c]quinolin-11-one, using apposite nucleophilic group with a suitable base or acid could be obtained 28 novel tetracyclic azafluorenone derivatives. The cytotoxic activity of these analogues was examined in cancer cell lines by MTT assay and compounds 4, 5, 13, and 26 were selected to evaluate in topoisomerase I drug screening assay, respectively. At the same time, 17 compounds were selected for NCI-60 anticancer drug screen to prevent the narrower concept of an in vitro screening model. Its worth to find that 9-chloro-6-(piperazin-1-yl)-11H-indeno[1,2-c]quinolin-11-one (12) showed greater cytotoxicity than another azafluorenone derivatives with an average GI(50) of 10.498 mu M over 60 cell lines. We also found that another analogue, 9-chloro-6-(2-methylpiperazin-1-yl)-11H-indeno[1,2-c]quinolin-11-one (13), exhibited preferential growth inhibition effect toward cancer cell lines and showed a significant inhibitory effect on topoisomerase I. (C) 2016 Production and hosting by Elsevier B.V. on behalf of King Saud University.

About 1,4-Dioxa-8-azaspiro[4.5]decane, If you have any questions, you can contact Chen, TC; Yu, DS; Chen, SJ; Chen, CL; Lee, CC; Hsieh, YY; Chang, LC; Guh, JH; Lin, JJ; Huang, HS or concate me.. Computed Properties of C7H13NO2

Reference:
Piperidine – Wikipedia,
Piperidine | C5H7510N – PubChem

 

Can You Really Do Chemisty Experiments About C7H13NO2

Recommanded Product: 1,4-Dioxa-8-azaspiro[4.5]decane. About 1,4-Dioxa-8-azaspiro[4.5]decane, If you have any questions, you can contact An, Y; Zhang, BS; Zhang, Z; Liu, C; Gou, XY; Ding, YN; Liang, YM or concate me.

Recommanded Product: 1,4-Dioxa-8-azaspiro[4.5]decane. In 2020 CHEM COMMUN published article about INTRAMOLECULAR ALKANE ARYLATION; C-H FUNCTIONALIZATION; PHENANTHRIDINE DERIVATIVES; OXIDATIVE CYCLIZATION; ARYL IODIDES; METAL-FREE; BOND; CONSTITUENTS; ALKALOIDS; AMINATION in [An, Yang; Zhang, Bo-Sheng; Zhang, Zhe; Liu, Ce; Gou, Xue-Ya; Ding, Ya-Nan; Liang, Yong-Min] Lanzhou Univ, State Key Lab Appl Organ Chem, Lanzhou 730000, Peoples R China in 2020, Cited 69. The Name is 1,4-Dioxa-8-azaspiro[4.5]decane. Through research, I have a further understanding and discovery of 177-11-7.

This report describes a carboxylate-assisted palladium-catalysed Catellani reaction, which is compatible with ortho-amination and unactivated C(sp(2))-H arylation. This method was used to synthesize a series of 1-amino substituted dihydrophenanthridines, phenanthridines and 6H-benzo[c]chromenes. Based on kinetic isotope experiments, the kinetic curve proves that pivalic acid accelerates the reaction rate of unactivated C(sp(2))-H activation, and thus this rate can keep up with the five membered aryl-norbornene-palladacycle (ANP) intermediate.

Recommanded Product: 1,4-Dioxa-8-azaspiro[4.5]decane. About 1,4-Dioxa-8-azaspiro[4.5]decane, If you have any questions, you can contact An, Y; Zhang, BS; Zhang, Z; Liu, C; Gou, XY; Ding, YN; Liang, YM or concate me.

Reference:
Piperidine – Wikipedia,
Piperidine | C5H7510N – PubChem

 

Why Are Children Getting Addicted To 177-11-7

Product Details of 177-11-7. About 1,4-Dioxa-8-azaspiro[4.5]decane, If you have any questions, you can contact Zhang, Z; Zhang, BS; Li, KL; An, Y; Liu, C; Gou, XY; Liang, YM or concate me.

Product Details of 177-11-7. In 2020 J ORG CHEM published article about SUBSTITUTED ARYL IODIDES; ARYLATIVE DEAROMATIZATION; FLUORESCENT-PROBE; ACCESS; LEVOFLOXACIN; BOND; PD; CYCLIZATION; AMINATION; AGENTS in [Zhang, Zhe; Zhang, Bo-Sheng; An, Yang; Liu, Ce; Gou, Xue-Ya; Liang, Yong-Min] Lanzhou Univ, State Key Lab Appl Organ Chem, Lanzhou 730000, Peoples R China; [Li, Kai-Li] Lanzhou Univ, Clin Med Coll 2, Lanzhou 730000, Peoples R China in 2020, Cited 103. The Name is 1,4-Dioxa-8-azaspiro[4.5]decane. Through research, I have a further understanding and discovery of 177-11-7.

This report describes a palladium-catalyzed dearomatization and amination tandem reaction of 2,3-disubstituted indoles and benzofurans via the Catellani strategy. This reaction provides a new method for the construction of amino-substituted indoline-fused cyclic and benzofuran spiro compounds in good yields. The reaction has broad functional group compatibility and substrate scope.

Product Details of 177-11-7. About 1,4-Dioxa-8-azaspiro[4.5]decane, If you have any questions, you can contact Zhang, Z; Zhang, BS; Li, KL; An, Y; Liu, C; Gou, XY; Liang, YM or concate me.

Reference:
Piperidine – Wikipedia,
Piperidine | C5H7510N – PubChem

 

Something interesting about 1,4-Dioxa-8-azaspiro[4.5]decane

Recommanded Product: 1,4-Dioxa-8-azaspiro[4.5]decane. About 1,4-Dioxa-8-azaspiro[4.5]decane, If you have any questions, you can contact Patil, DV; Si, T; Kim, HY; Oh, K or concate me.

Patil, DV; Si, T; Kim, HY; Oh, K in [Patil, Dilip, V; Si, Tengda; Oh, Kyungsoo] Chung Ang Univ, Ctr Metareceptome Res, Grad Sch Pharmaceut Sci, Seoul 06974, South Korea; [Kim, Hun Young] Chung Ang Univ, Dept Global Innovat Drugs, Seoul 06974, South Korea published Visible-Light-Induced Photoaddition of N-Nitrosoalkylamines to Alkenes: One-Pot Tandem Approach to 1,2-Diamination of Alkenes from Secondary Amines in 2021, Cited 46. Recommanded Product: 1,4-Dioxa-8-azaspiro[4.5]decane. The Name is 1,4-Dioxa-8-azaspiro[4.5]decane. Through research, I have a further understanding and discovery of 177-11-7.

The generation of aminium radical cation species from N-nitrosoamines is disclosed for the first time through visible-light excitation at 453 nm. The developed visible-light-promoted photoaddition reaction of N-nitrosoamines to alkenes was combined with the o-NQ-catalyzed aerobic oxidation protocol of amines to telescope the direct handling of harmful N-nitroso compounds, where the desired aamino oxime derivatives were obtained in a one-pot tandem Nnitrosation and photoaddition sequence.

Recommanded Product: 1,4-Dioxa-8-azaspiro[4.5]decane. About 1,4-Dioxa-8-azaspiro[4.5]decane, If you have any questions, you can contact Patil, DV; Si, T; Kim, HY; Oh, K or concate me.

Reference:
Piperidine – Wikipedia,
Piperidine | C5H7510N – PubChem

 

What unique challenges do researchers face in 1,4-Dioxa-8-azaspiro[4.5]decane

About 1,4-Dioxa-8-azaspiro[4.5]decane, If you have any questions, you can contact West, MS; Mills, LR; McDonald, TR; Lee, JB; Ensan, D; Rousseaux, SAL or concate me.. Recommanded Product: 177-11-7

In 2019 ORG LETT published article about NUCLEOPHILIC CYCLOPROPANATION; ASYMMETRIC CYCLOPROPANATION; 3+2 ANNULATION; AMINO-ACIDS; C-C; BIS(IODOZINCIO)METHANE; AMINOCYCLOPROPANES; CYCLOADDITION; 1,4-ADDITION; HOMOENOLATE in [West, Michael S.; Mills, L. Reginald; McDonald, Tyler R.; Lee, Jessica B.; Ensan, Deeba; Rousseaux, Sophie A. L.] Univ Toronto, Dept Chem, Davenport Res Labs, 80 St George St, Toronto, ON M5S 3H6, Canada; [Lee, Jessica B.] Paraza Pharma Inc, 275 Blvd Armand Frappier, Laval, PQ H7V 4A7, Canada; [Ensan, Deeba] Ontario Inst Canc Res, 661 Univ Ave Suite 510, Toronto, ON M5G 0A3, Canada in 2019, Cited 48. The Name is 1,4-Dioxa-8-azaspiro[4.5]decane. Through research, I have a further understanding and discovery of 177-11-7. Recommanded Product: 177-11-7

Cyclopropylamines are prevalent in pharmaceuticals and agrochemicals. Herein, we report the synthesis of trans-2-substituted cyclopropylamines in high diastereoselectivity from readily available alpha-chloroaldehydes. The reaction proceeds via trapping of an electrophilic zinc homoenolate with an amine followed by ring closure to generate the cyclopropylamine. We have also observed that cyclopropylamine cis/trans-isomerization occurs in the presence of zinc halide salts and that this process can be turned off by the addition of a polar aprotic cosolvent.

About 1,4-Dioxa-8-azaspiro[4.5]decane, If you have any questions, you can contact West, MS; Mills, LR; McDonald, TR; Lee, JB; Ensan, D; Rousseaux, SAL or concate me.. Recommanded Product: 177-11-7

Reference:
Piperidine – Wikipedia,
Piperidine | C5H7510N – PubChem

 

A new application about177-11-7

Quality Control of 1,4-Dioxa-8-azaspiro[4.5]decane. About 1,4-Dioxa-8-azaspiro[4.5]decane, If you have any questions, you can contact Zeng, L; Li, HR; Hu, JC; Zhang, DC; Hu, JY; Peng, P; Wang, SC; Shi, RY; Peng, JQ; Pao, CW; Chen, EL; Lee, JF; Zhang, H; Chen, YH; Lei, AW or concate me.

Recently I am researching about CARBONYLATION REACTIONS; ORGANIC ELECTROSYNTHESIS; AMINES; CARBON; HYDROCARBONS; 2-YNAMIDES; EVOLUTION; CATALYSTS; GREEN, Saw an article supported by the National Natural Science Foundation of ChinaNational Natural Science Foundation of China (NSFC) [21520102003, 21702152]; 973 ProgramNational Basic Research Program of China [2012CB725302]; CAS Interdisciplinary Innovation Team; Hubei Province Natural Science Foundation of ChinaNatural Science Foundation of Hubei Province [2017CFA010]. Quality Control of 1,4-Dioxa-8-azaspiro[4.5]decane. Published in NATURE PUBLISHING GROUP in LONDON ,Authors: Zeng, L; Li, HR; Hu, JC; Zhang, DC; Hu, JY; Peng, P; Wang, SC; Shi, RY; Peng, JQ; Pao, CW; Chen, EL; Lee, JF; Zhang, H; Chen, YH; Lei, AW. The CAS is 177-11-7. Through research, I have a further understanding and discovery of 1,4-Dioxa-8-azaspiro[4.5]decane

Oxidative carbonylation using CO/O-2 is an attractive strategy to construct carbonyl compounds, but the explosive limit of the gas mixture hampers its application. Now, this safety issue is overcome in the aminocarbonylation of alkynes by replacing the external oxidant O-2 by electrochemistry facilitating a mild and safe reaction. Palladium-catalysed oxidative carbonylation using oxygen as the oxidant is an economical approach; however, the gas mixture of CO and air has an explosive limit of 12.5-74.0% that could hamper extensive application of this process. Herein we report an electrochemical aminocarbonylation of alkynes under atmospheric pressure in an undivided cell without an external oxidant. The transformation has a broad substrate scope (83 examples) that involves primary amines and ammonium salts. Furthermore, mechanistic studies through cyclic voltammetry, in situ infrared and quick-scanning X-ray absorption fine structure spectroscopy reveal the reasons for this protocol proceeding smoothly under electrochemical conditions.

Quality Control of 1,4-Dioxa-8-azaspiro[4.5]decane. About 1,4-Dioxa-8-azaspiro[4.5]decane, If you have any questions, you can contact Zeng, L; Li, HR; Hu, JC; Zhang, DC; Hu, JY; Peng, P; Wang, SC; Shi, RY; Peng, JQ; Pao, CW; Chen, EL; Lee, JF; Zhang, H; Chen, YH; Lei, AW or concate me.

Reference:
Piperidine – Wikipedia,
Piperidine | C5H7510N – PubChem